3.函數(shù)y=sin2x+cos2x如何平移可以得到函數(shù)y=sin2x-cos2x圖象(  )
A.向左平移$\frac{π}{2}$B.向右平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

分析 先化簡函數(shù),再利用圖象變換方法,即可得出結(jié)論.

解答 解:y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),y=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
y=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=$\sqrt{2}$sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$],
∴函數(shù)y=sin2x+cos2x向右平移$\frac{π}{4}$得到函數(shù)y=sin2x-cos2x圖象,
故選D.

點評 本題考查圖象變換,確定函數(shù)的解析式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex
(Ⅰ)過原點作曲線y=f(x)的切線,求切線的方程;
(Ⅱ)當(dāng)x>0時,討論曲線y=f(x)與曲線y=mx2(m>0)公共點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=ex-e,則曲線y=f(x)在點(1,f(1))處的切線方程是y=ex-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四棱錐P-ABCD中,底面ABCD是正方形,PB⊥BC,PD⊥CD,E點滿足$PE=\frac{1}{3}PD$
(1)求證:PA⊥平面ABCD;
(2)在線段BC上是否存在點F使得PF∥面EAC?若存在,確定F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{4}=1({a>0})$的左、右焦點和點$({2,\sqrt{5}})$為頂點的三角形為直角三角形,則該雙曲線的焦距為( 。
A.$2\sqrt{5}$B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,則z=2x-3y的最小值為( 。
A.-32B.-16C.-10D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式$\frac{(x-1)(x-2)}{{\sqrt{x-1}}}≥0$的解集為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0且a≠1,(2a)m=a,(3a)m=2a,求證:($\frac{3}{2}$)mn=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線l1:y=kx-1與直線l2:x+y-1=0的交點位于第一象限的充要條件是k>1.

查看答案和解析>>

同步練習(xí)冊答案