分析 (1)分類討論,求出△MON(O為坐標(biāo)原點)面積的最小值,即可求拋物線C的方程;
(2)分類討論,利用直線l上的點Q滿足$\frac{2}{{|FQ{|^2}}}=\frac{1}{{|FM{|^2}}}+\frac{1}{{|FN{|^2}}}$,求出弦長,即可求點Q的軌跡方程.
解答 解:(1)①當(dāng)l⊥x時,l:x=1,${y_M}=\sqrt{2p}$,${S_△}=\frac{1}{2}×2\sqrt{2p}×1=\sqrt{2p}=2,p=2$
②當(dāng)l斜率存在時,設(shè)l:y=k(x-1)與y2=2px聯(lián)立,得k2x2-(2k2+2p)+k2=0,${S_△}=\frac{1}{2}×2\sqrt{2p+\frac{{4{p^2}}}{k^2}}>\sqrt{2p}$,所以當(dāng)l⊥x時面積最小,
所以p=2,拋物線方程為y2=4x…(6分)
(2)設(shè)Q(x,y),M(x1,y1),N(x2,y2),
①當(dāng)l⊥x時,l:x=1,y1=2,y2=-2,點Q(1,±2)
②當(dāng)l斜率存在時,設(shè)l:y=k(x-1)與y2=4x聯(lián)立,得k2x2-(2k2+4)+k2=0,
|FQ|2=(1+k2)(x-1)2,$|FM{|^2}=(1+{k^2}){({x_1}-1)^2}$,$|FN{|^2}=(1+{k^2}){({x_2}-1)^2}$,
由$\frac{2}{{|FQ{|^2}}}=\frac{1}{{|FM{|^2}}}+\frac{1}{{|FN{|^2}}}$得$\frac{2}{{{{(x-1)}^2}}}=\frac{1}{{{{({x_1}-1)}^2}}}+\frac{1}{{{{({x_2}-1)}^2}}}=\frac{{{{({x_1}-1)}^2}+{{({x_2}-1)}^2}}}{{{{({x_1}-1)}^2}{{({x_2}-1)}^2}}}$=$\frac{k^2}{2}+1$,
因為$k=\frac{y}{x-1}$,所以$\frac{2}{{{{(x-1)}^2}}}=\frac{y^2}{{2{{(x-1)}^2}}}+1(x≠1)$,
化簡得2(x-1)2+y2=4(x≠±1),Q(1,±2)也符合.
所以點Q的軌跡方程為2(x-1)2+y2=4…(6分)
點評 本題考查軌跡方程,考查拋物線方程,考查直線與拋物線的位置關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (0,-1) | C. | (-$\frac{1}{16}$,0) | D. | (0,-$\frac{1}{16}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)成績好 | 數(shù)學(xué)成績一般 | 總計 | |
物理成績好 | |||
物理成績一般 | |||
總計 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $3\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2$\sqrt{2}$+1 | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
生二胎 | 不生二胎 | 合計 | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com