【題目】如圖,在四棱錐為矩形,,平面平面

1)證明:平面平面

2)若中點,直線與平面所成的角為,求二面角的正弦值.

【答案】1)證明見解析(2

【解析】

1)推導(dǎo)出平面,,從而平面,由此能證明平面平面

2)由平面在平面內(nèi)的射影,從而即為直線與平面所成的角,取中點,連結(jié),則,以為原點,建立空間直角坐標(biāo)系,利用向量法能求出二面角的正弦值.

1)證明:∵平面平面,平面平面

矩形中,,

平面

平面,

又∵,平面平面

平面

平面,

∴平面平面

2)解:由(1)知平面在平面內(nèi)的射影,

即為直線與平面所成的角,

由題意,,

中點,連結(jié),則,

為原點,建立如圖所示的空間直角坐標(biāo)系,

,,,

,,

設(shè)平面的一個法向量為

,即,

,則,,

同理易得,平面的一個法向量為

,

∴二面角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活,在家里不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,所以選擇網(wǎng)購的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計了2014年一2018年五年來在該網(wǎng)店的購買人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:

年份(

1

2

3

4

5

24

27

41

64

79

1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與時間(單位:年)的關(guān)系,請通過計算相關(guān)系數(shù)加以說明,(若,則該線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式

參考數(shù)據(jù)

2)該網(wǎng)店為了更好的設(shè)計2019年的“雙十一”網(wǎng)購活動安排,統(tǒng)計了2018年“雙十一”期間8個不同地區(qū)的網(wǎng)購顧客用于網(wǎng)購的時間x(單位:小時)作為樣本,得到下表

地區(qū)

時間

0.9

1.6

1.4

2.5

2.6

2.4

3.1

1.5

①求該樣本數(shù)據(jù)的平均數(shù)

②通過大量數(shù)據(jù)統(tǒng)計發(fā)現(xiàn),該活動期間網(wǎng)購時間近似服從正態(tài)分布,如果預(yù)計2019年“雙十一”期間的網(wǎng)購人數(shù)大約為50000人,估計網(wǎng)購時間的人數(shù).

(附:若隨機(jī)變量服從正態(tài)分布,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 .

(1)若上的增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點上,且

1)證明:平面;

2)求楔面與側(cè)面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,長方體中,,,點,,分別為, 的中點,過點的平面與平面平行,且與長方體的面相交,交線圍成一個幾何圖形.

(1)在圖中畫出這個幾何圖形,并求這個幾何圖形的面積(畫圖說出作法,不用說明理由);

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2=8內(nèi)有一點P0-1,2),AB為過點P0且傾斜角為α的弦.

1)當(dāng)α=時,求AB的長;

2)當(dāng)弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相交于兩點,為原點,若.

1)求實數(shù)的值;

2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體中,,,的中點。

(Ⅰ)求證:平面

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項公式;

2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項和.

查看答案和解析>>

同步練習(xí)冊答案