【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】為備戰(zhàn)年瑞典乒乓球世界錦標賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進行隊內(nèi)單打?qū)贡荣,每兩人比賽一場,共賽三?/span>,每場比賽勝者得分,負者得分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)在該次對抗比賽中,丙得分為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某媒體對“男女延遲退休”這一公眾關(guān)注的問題進行了民意調(diào)查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認為對這一問題的看法與性別有關(guān)?
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
(2)從贊同“男女延遲退休”16人中選出3人進行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計整個地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣2ax+1+lnx
(1)當a=0時,若函數(shù)f(x)在其圖象上任意一點A處的切線斜率為k,求k的最小值,并求此時的切線方程;
(2)若函數(shù)f(x)的極大值點為x1 , 證明:x1lnx1﹣ax12>﹣1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=asinx﹣bcosx的一條對稱軸為x= ,則直線l:ax﹣by+c=0的傾斜角為( )
A.45°
B.60°
C.120°
D.135°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)在平面直角坐標系中,已知橢圓: 的離心率,直線過橢圓的右焦點,且交橢圓于, 兩點.
(1)求橢圓的標準方程;
(2)已知點,連結(jié),過點作垂直于軸的直線,設(shè)直線與直線交于點,試探索當變化時,是否存在一條定直線,使得點恒在直線上?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足(2a﹣c)cosB=bcosC
(1)求角B的大。
(2)若b= ,a+c=4,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點且 =λ ,若 ≥ ,則λ的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com