【題目】為備戰(zhàn)年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊內(nèi)單打?qū)贡荣,每兩人比賽一場,共賽三?/span>,每場比賽勝者得分,負(fù)者得分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)在該次對抗比賽中,丙得分為,求的分布列和數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,左、右頂點分別為,上、下頂點分別為,四邊形與四邊形的面積之和為4.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,(其中為坐標(biāo)原點),求直線被以線段為直徑的圓截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017湖南長沙二模】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017河北唐山三模】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓mx2+ny2=1與直線x+y﹣1=0相交于A,B兩點,過AB中點M與坐標(biāo)原點的直線的斜率為 ,則 的值為( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上的一個動點,弦分別過左右焦點,且當(dāng)線段的中點在軸上時, .
(1)求該橢圓的離心率;(2)設(shè),試判斷是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分分)設(shè)數(shù)列的前項和為,已知,,.
(1)求數(shù)列的通項公式;
(2)證明:對一切正整數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com