9.若a=33(10),b=52(6),c=11111(2),則三個(gè)數(shù)的大小關(guān)系是a>b>c.

分析 分別將b,c轉(zhuǎn)化為10進(jìn)制,然后比較大。

解答 解:將b,c都轉(zhuǎn)化為10進(jìn)制數(shù),
b=52(6)=5×61+2=32,
c=11111(2)=1×24+1×23+1×22+1×2+1×20=31,
因?yàn)?3>32>31,
所以a>b>c.
故答案為:a>b>c.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不同進(jìn)制數(shù)之間的轉(zhuǎn)換,解答的關(guān)鍵是熟練掌握不同進(jìn)制之間數(shù)的轉(zhuǎn)化規(guī)則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題“若(a-2)(b-3)=0,則a=2或b=3”的否命題是( 。
A.若(a-2)(b-3)≠0,則a≠2或b≠3B.若(a-2)(b-3)≠0,則a≠2且b≠3
C.若(a-2)(b-3)=0,則a≠2或b≠3D.若(a-2)(b-3)=0,則a≠2且b≠3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.二項(xiàng)式${(2-\sqrt{x})^8}$的展開(kāi)式中x3的系數(shù)是112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知曲線C:$\frac{x^2}{4}+\frac{y^2}{9}=1$,直線l:$\left\{{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}}\right.(t為參數(shù))$.
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)已知點(diǎn)P為曲線C上的一個(gè)動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列函數(shù)的定義域:
(1)y=$\sqrt{lg(cosx)}$;
(2)y=lgsin2x+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.復(fù)數(shù)$z=\frac{i^3}{i-1}$,則其共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在四面體S-ABCD中,$AB⊥BC,AB=BC=\sqrt{2}$SA=SC=SB=2,則該四面體外接球的表面積是( 。
A.$\frac{4}{3}π$B.$\frac{8}{3}π$C.$\frac{10}{3}π$D.$\frac{16}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列四個(gè)命題中真命題的個(gè)數(shù)是( 。
①若y=f(x)是奇函數(shù),則y=|f(x)|的圖象關(guān)于y軸對(duì)稱;
②若logm3<logn3<0,則0<m<n<1;
③若函數(shù)f(x)對(duì)任意x∈R滿足f(x)•f(x+4)=1,則8是函數(shù)f(x)的一個(gè)周期;
④命題“在△ABC中,A>B是sinA>sinB成立的充要條件;
⑤命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=2sin(ωx+φ)(x∈R,ω>0,-π<φ<π)的部分圖象如圖所示,若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案