分析 (Ⅰ)由曲線C1的普通方程能求出曲線C1的參數(shù)方程,由ρ2=x2+y2,ρcosθ=x,ρsinθ=y能求出曲線C2的直角坐標方程.
(Ⅱ)求出P(2,0),寫出l的方程是x-y-2=0,$\left\{\begin{array}{l}x=2cosα\\ y=2\sqrt{3}sinα\end{array}\right.$代入x-y-2=0得$cos(α+\frac{π}{3})=\frac{1}{2}$.可得α=2kπ(k∈Z)或$α=2kπ-\frac{2π}{3}(k∈{Z})$,于是A(2,0),B(-1,-3),即可求解.
解答 解:(Ⅰ)C1的參數(shù)方程是$\left\{\begin{array}{l}x=2cosα\\ y=2\sqrt{3}sinα\end{array}\right.$(α為參數(shù)).
因為ρ=2cosθ-4sinθ,所以ρ2=2ρcosθ-4ρsinθ,
C2的直角直角坐標方程是x2+y2-2x+4y=0.…(5分)
(Ⅱ)y=0代入x2+y2-2x+4y=0得x=0或x=2,所以P(2,0),l的方程是x-y-2=0
.$\left\{\begin{array}{l}x=2cosα\\ y=2\sqrt{3}sinα\end{array}\right.$代入x-y-2=0得$cos(α+\frac{π}{3})=\frac{1}{2}$.
所以α=2kπ(k∈Z)或$α=2kπ-\frac{2π}{3}(k∈{Z})$,
于是A(2,0),B(-1,-3),故$|AB|=3\sqrt{2}$.…(10分)
點評 本題考查了極坐標、參數(shù)方程,考查了轉(zhuǎn)化思想,計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com