【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出m,n的值;

(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

【答案】(1)(2)甲乙兩組的整體水平相當(dāng),乙組更穩(wěn)定一些(3)

【解析】

(Ⅰ)由題意根據(jù)平均數(shù)的計(jì)算公式分別求出m,n的值.

(Ⅱ)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件數(shù)的方差,再根據(jù)它們的平均值相等,可得方差較小的發(fā)揮更穩(wěn)定一些.

(Ⅲ)用列舉法求得所有的基本事件的個(gè)數(shù),找出其中滿足該車間“質(zhì)量合格”的基本事件的個(gè)數(shù),即可求得概率.

(1)根據(jù)題意可得:,∴

,∴

(2)根據(jù)題意可得:

,

,

,∴甲乙兩組的整體水平相當(dāng),乙組更穩(wěn)定一些;

(3)質(zhì)監(jiān)部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),設(shè)兩人加工的合格零件數(shù)分別為,則所有的,,,,,,,,,,,,,,,,,,共計(jì)個(gè),而的基本事件有,,,,,共計(jì)8個(gè)基本事件,故滿的基本事件共25-8=17即該車間“質(zhì)量合格”的基本事件有17個(gè),故該車間“質(zhì)量合格”的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶元,售價(jià)每瓶元,未售出的酸奶降價(jià)處理,以每瓶元的價(jià)格當(dāng)天全部處理完。據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān),如果最高氣溫不低于,需求量為瓶;如果最高氣溫位于區(qū)間,需求量為瓶;如果最高氣溫低于,需求量為瓶,為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

天數(shù)

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過(guò)瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:),若該超市在六月份每天的進(jìn)貨量均為瓶,寫(xiě)出的所有可能值,并估計(jì)大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),則(
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)=
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函數(shù)f(x)在x=2處取得極值.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.

附注:

參考數(shù)據(jù):,,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(a,a),B(2,3),C(3,2).
(1)若向量 , 的夾角為鈍角,求實(shí)數(shù)a的取值范圍;
(2)若a=1,點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上, =m +n (m,n∈R),求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;

(Ⅱ)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且,求使取得最小值的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案