3.已知f(x)=|ax-1|,若實數(shù)a>0,不等式f(x)≤3的解集是{x|-1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若$\frac{f(x)+f(-x)}{3}$<|k|存在實數(shù)解,求實數(shù)k的取值范圍.

分析 (Ⅰ)求出不等式的解集,根據(jù)對應(yīng)關(guān)系求出a的值即可;
(Ⅱ)根據(jù)不等式的性質(zhì)求出 $\frac{f(x)+f(-x)}{3}$的最小值,得到關(guān)于k的不等式,解出即可.

解答 解:(Ⅰ)由|ax-1|≤3,得-3≤ax-1≤3,解得:-2≤ax≤4,
a>0時,-$\frac{2}{a}$≤x≤$\frac{4}{a}$,
而f(x)≤3的解集是{x|-1≤x≤2},
故 $\left\{\begin{array}{l}{-\frac{2}{a}=-1}\\{\frac{4}{a}=2}\end{array}\right.$,解得:a=2;
故a=2;
(Ⅱ) $\frac{f(x)+f(-x)}{3}$=$\frac{|2x-1|+|2x+1|}{3}$≥$\frac{|2x-1-2x-1|}{3}$=$\frac{2}{3}$,
故要使 $\frac{f(x)+f(-x)}{3}$<|k|存在實數(shù)解,只需|k|>$\frac{2}{3}$,
解得k>$\frac{2}{3}$或k<-$\frac{2}{3}$,
∴實數(shù)k取值范圍是(-∞,-$\frac{2}{3}$)∪($\frac{2}{3}$,+∞).

點評 本題考查了解絕對值不等式問題,考查分類討論思想以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為宣傳3月5日學(xué)雷鋒紀念日,成都七中在高一,高二年級中舉行學(xué)雷鋒知識競賽,每年級出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙隊每人答對的概率都是$\frac{2}{3}$.設(shè)每人回答正確與否相互之間沒有影響,用X表示甲隊總得分.
(1)求隨機變量X的分布列及其數(shù)學(xué)期望E(X);
(2)求甲隊和乙隊得分之和為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在二項式(1+x)n的展開式中,存在著系數(shù)之比為5:7的相鄰兩項,則指數(shù)n(n∈N*)的最小值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合M={銳角},N={小于90°的角},P={第一象限的角},下列說法:
①P⊆N,②N∩P=M,③M⊆P,④(M∪N)⊆P
其中正確的是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正項數(shù)列n的前n項和為Sn,且a1=1,an+12=Sn+1+Sn
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}={a_{2n-1}}•{2^{a_n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用四種不同的顏色為正六邊形(如圖)中的六塊區(qū)域涂色,要求有公共邊的區(qū)域涂不同顏色,一共有732種不同的涂色方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個邊長為2的大正方形,若直角三角形中較小的銳角$α=\frac{π}{6}$,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,飛鏢落在小正方形內(nèi)的概率是
( 。
A.$1-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{4-\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在斜三棱柱ABC-A1B1C1中,側(cè)面AC1⊥平面ABC,$A{A_1}=\sqrt{2}a$,A1C=CA=AB=a,AB⊥AC,D是AA1的中點.
(1)求證:CD⊥平面AB1;
(2)在側(cè)棱BB1上確定一點E,使得二面角E-A1C1-A的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}的前n項和為Sn,且S6=24,S9=63,則a4=(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案