如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是
3
,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大。
(3)求直線AB1與平面A1BD所成的角的正弦值.
考點:二面角的平面角及求法,直線與平面所成的角
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)設(shè)AB1與A1B相交于點P,連接PD,則PD∥B1C.由此能證明B1C∥平面A1BD.
(Ⅱ)法一:由已知得BD⊥AC,BD⊥A1D,∠A1DA為二面角A1-BD-A的平面角,由此能求出二面角A1-BD-A的大。
(Ⅱ)法二:建立空間直角坐標(biāo)系,利用向量法能求出二面角A1-BD-A的大。
(Ⅲ)平面A1BD的法向量
n
=(-
3
,0,1)
AB1
=(-1,
3
,
3
),由此利用向量法能求出直線AB1與平面A1BD所成的角的正弦值.
解答: (Ⅰ)證明:設(shè)AB1與A1B相交于點P,連接PD,
則P為AB1中點,∵D為AC中點,∴PD∥B1C.
又∵PD?平面A1BD,
∴B1C∥平面A1BD.…(4分)
(Ⅱ)解法一:由正三棱柱ABC-A1B1C1中D是AC的中點,
知BD⊥AC,
又∵平面AA1C1C⊥平面ABC,
∴BD⊥平面AA1C1C,∴BD⊥A1D,
故∠A1DA為二面角A1-BD-A的平面角,
又AD⊥A1A,A1A=
3
,AD=1,
∴∠A1DA=60°,即二面角A1-BD-A的大小為60°.…(8分)
(Ⅱ)解法二:如圖建立空間直角坐標(biāo)系,
則D(0,0,0),A(1,0,0),A1(1,0,
3
),
B(0,
3
,0),B1(0,
3
,
3
),
A1B
=(-1,
3
,-
3
),
A1D
=(-1,0,-
3
),
設(shè)平面A1BD的法向量為
n
=(x,y,z),
n
A1B
=-x+
3
y-
3
z=0,
n
A1D
=-x-
3
z=0
則有
x=-
3
z
y=0
,令z=1,得
n
=(-
3
,0,1)
由題意,知
AA1
=(0,0,
3
)是平面ABD的一個法向量.
設(shè)面角A1-BD-A的平面角為θ,
則cosθ=|cos<
n
,
AA1
>|=
1
2
,∴θ=
π
3
,
∴二面角A1-BD-A的大小是
π
3
.…(8分)
(Ⅲ)解:∵平面A1BD的法向量
n
=(-
3
,0,1)
AB1
=(-1,
3
,
3
),
設(shè)直線AB1與平面A1BD所成的角為α,
則sinα=|cos<
AB1
,
n
>|=|
3
+
3
4
7
|=
21
7
,
∴直線AB1與平面A1BD所成的角的正弦值為
21
7
點評:本題考查直線與平面平行的證明,考查二面角的大小的求法,考查直線與平面所成角的正弦值的求法,解題時要注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是1.
則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(3,4)的動直線與兩坐標(biāo)軸的交點分別為A,B,過A,B分別作兩軸的垂線交于點M,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項為
3
2
,公比不等于1的等比數(shù)列{an}的前n項和為Sn(n∈N* ),且-2S2,S3,4S4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=n|an|,數(shù)列{bn}的前n項和為Tn,求Tn并比較Tn+bn 與6大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 S=5+9+13+…+102,分別用“For”語句和“While”語句描述計算S這一問題的算法過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與橢圓
y2
25
+
x2
16
=1有共同焦點,且過點(0,2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB邊上的高所在直線方程為x+2y+1=0,∠C的平分線所在直線方程為y-1=0,若點A的坐標(biāo)為(0,-1),求:
(Ⅰ)點C的坐標(biāo);
(Ⅱ)直線AB的方程;
(Ⅲ)B點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且a<b<c,sinA=
3
a
2b

(Ⅰ)求角B的大;
(Ⅱ)若a=2,b=
7
,求c及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁UA.

查看答案和解析>>

同步練習(xí)冊答案