11.如圖,透明塑料制成的長方體ABCD-A′B′C′D內(nèi)灌進(jìn)一些水,固定容器底面一邊BC與地面上,再將容器傾斜.隨著傾斜度的不同,有下面四個(gè)命題:
①有水的部分始終呈棱柱形,沒水的部分也始終呈棱柱形;
②棱A′D′始終與水面所在平面平行;
③水面EFGH所在四邊形的面積為定值;
④當(dāng)容器傾斜如圖3所示時(shí),BE•BF是定值.
其中正確命題的序號(hào)是①②④.

分析 利用棱柱的結(jié)構(gòu)特征及柱體的體積公式逐一核對(duì)四個(gè)選項(xiàng)得答案.

解答 解:①在以BC為旋轉(zhuǎn)軸傾斜的過程中,平面ABFE∥平面DCGH,其余的面為四邊形,且相鄰四邊形的公共邊互相平行,故有水的部分始終呈棱柱形,沒水的部分也始終呈棱柱形,①正確;
②∵A′D′∥EH,∴棱A′D′始終與水面所在平面平行,②正確;
③水面EFGH中FG為定值,EF變化,則水面EFGH所在四邊形的面積變化,③錯(cuò)誤;
④∵容器中水的容積為定值,且棱柱BEF-CHG的高BC為定值,∴當(dāng)容器傾斜如圖3所示時(shí),BE•BF是定值,④正確.
∴正確命題的序號(hào)是①②④.
故答案為:①②④.

點(diǎn)評(píng) 本題考查棱柱的結(jié)構(gòu)特征,考查了棱柱的體積,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=-x3+3x(x<0)的極值點(diǎn)為x0,則x0=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.動(dòng)點(diǎn)P在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,Q點(diǎn)在圓C:x2+(y-5)2=1上移動(dòng),試求PQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)點(diǎn)P為圓C1:x2+y2=2上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,垂足為Q,點(diǎn)M滿足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求點(diǎn)M的軌跡C2的方程;
(2)過直線x=2上的點(diǎn)T作圓C1的兩條切線,設(shè)切點(diǎn)分別為A、B,若直線AB與(1)中的曲線C2交與C、D兩點(diǎn),求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)雙曲線M的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
(1)求M的實(shí)軸長、虛軸長及焦距;
(2)若拋物線N:y2=2px(p>0)的焦點(diǎn)為雙曲線M的右頂點(diǎn),且直線x=m(m>0)與拋物線N交于A、B兩點(diǎn),若OA⊥OB(O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定點(diǎn)M(1,1),動(dòng)A、B點(diǎn)在圓C:x2+y2=4上運(yùn)動(dòng)且MB垂直MA,則弦AB長度最小值為$\sqrt{6}$-$\sqrt{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:x2+y2-8x-4y+4=0及直線l:(2m+1)x+(m-1)y=7m-1(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C一定相交;
(2)求直線l與圓C所截得的弦長的最短長度及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{3}$,以原點(diǎn)O為圓心,b為半徑的圓與直線x-y+2=0相切,A、B分別是橢圓的左、右頂點(diǎn),P為橢圓C上的動(dòng)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P與A,B均不重合,直線PA,PB的斜率分別為k1,k2,求k1•k2的值;
(Ⅲ)設(shè)M為過P且垂直于x軸的直線上的點(diǎn),若$\frac{|OP|}{|OM|}$=λ($\frac{\sqrt{3}}{3}$≤λ<1),求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:①圖象關(guān)于點(diǎn)(1,0)對(duì)稱;②f(x)關(guān)于x=-1對(duì)稱;③當(dāng)∈[-1,1]時(shí),f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,則函數(shù)y=f(x)-($\frac{1}{2}$)|x|在區(qū)間[-3,3]內(nèi)的零點(diǎn)個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案