【題目】已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)將函數(shù)的圖象向右平移個單位長度,再向下平移)個單位長度后得到函數(shù)的圖象,且函數(shù)的最大值為2.

(。┣蠛瘮(shù)的解析式; (ⅱ)證明:存在無窮多個互不相同的正整數(shù),使得

【答案】(1);(2)見解析.

【解析】

)因為

所以函數(shù)的最小正周期

)()將的圖象向右平移個單位長度后得到的圖象,再向下平移)個單位長度后得到的圖象.

又已知函數(shù)的最大值為,所以,解得

所以

)要證明存在無窮多個互不相同的正整數(shù),使得,就是要證明存在無窮多個互不相同的正整數(shù),使得,即

知,存在,使得

由正弦函數(shù)的性質(zhì)可知,當時,均有

因為的周期為,

所以當)時,均有

因為對任意的整數(shù),

所以對任意的正整數(shù),都存在正整數(shù),使得

亦即存在無窮多個互不相同的正整數(shù),使得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè), 直線與曲線交于 兩點.

(1)當時,求的長度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形中,,,,,過點,交(如圖1.現(xiàn)沿折起,使得,得四棱錐(如圖2.

1)求證:平面平面

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1, 曲線C2,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. 并在兩種坐標系中取相同的單位長度。

(1)寫出曲線C1,C2的極坐標方程;

(2)在極坐標系中,已知點A是射線l:與C1的交點,點B是l與C2的異于極點的交點,當在區(qū)間上變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求的取值范圍;

2)記的極值點為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為為其左、右頂點,為橢圓上除外任意一點,若記直線的斜率分別為

1)求證:為定值;

2)若橢圓的長軸長為,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,設(shè)與橢圓相交的弦的中點,求線段的長.

查看答案和解析>>

同步練習冊答案