【題目】已知函數(shù)有兩個零點.
(1)求的取值范圍;
(2)記的極值點為,求證:.
【答案】(1)(2)見解析
【解析】
(1)求導得,分類討論求出函數(shù)的單調(diào)性,從而可求出答案;
(2)由題意得,則,令函數(shù),則,利用導數(shù)可求得,從而可得,可得,要證,只需,令,即證,令,求導后得函數(shù)的單調(diào)性與最值,由此可證結論.
解:(1)因為,
當時,,在單調(diào)遞增,至多只有一個零點,不符合題意,舍去;
當時,若,則;若,則,
所以在單調(diào)遞增,在單調(diào)遞減,
所以,
因為有兩個零點,所以必須,則,
所以,解得,
又因為時,; 時,,
所以當時,在和各有一個零點,符合題意,
綜上,;
(2)由(1)知,且,
因為的兩個零點為,所以,所以,
解得,令所以,
令函數(shù),則,
當時,;當時,;
所以在單調(diào)遞增,在單調(diào)遞減,
所以,所以,所以,
因為,又因為,所以,
所以,即,
要證,只需,
即證,即證,即證,
令,再令,即證,
令,則,
所以在單調(diào)遞增,所以,
所以,原題得證.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個單位長度,再向下平移()個單位長度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(。┣蠛瘮(shù)的解析式; (ⅱ)證明:存在無窮多個互不相同的正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}首項a1=1,前n項和Sn與an之間滿足an=
(1)求證:數(shù)列{}是等差數(shù)列
(2)求數(shù)列{an}的通項公式
(3)設存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k對于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:
編號 | 項目 | 收案(件) | 結案(件) | |
判決(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、繼承糾紛案件 | 3000 | 2900 | 1200 |
3 | 權屬、侵權糾紛案件 | 4100 | 4000 | 2000 |
4 | 合同糾紛案件 | 14000 | 13000 | n |
其中結案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問題.
(Ⅰ)在編號為1、2、3的收案案件中隨機取1件,求該件是結案案件的概率;
(Ⅱ)在編號為2的結案案件中隨機取1件,求該件是判決案件的概率;
(Ⅲ)在編號為1、2、3的三類案件中,判決案件數(shù)的平均數(shù)為,方差為S12,如果表中n,表中全部(4類)案件的判決案件數(shù)的方差為S22,試判斷S12與S22的大小關系,并寫出你的結論(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列滿足:,,其中.
(1)若,求數(shù)列的前項的和;
(2)若,.
①求數(shù)列的通項公式;
②記數(shù)列的前項的和為,若無窮項等比數(shù)列始終滿足,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線的方程為.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求直線l和曲線的極坐標方程;
(2)曲線分別交直線l和曲線于點A,B,求的最大值及相應的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com