【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:

編號

項目

收案(件)

結(jié)案(件)

判決(件)

1

刑事案件

2400

2400

2400

2

婚姻家庭、繼承糾紛案件

3000

2900

1200

3

權(quán)屬、侵權(quán)糾紛案件

4100

4000

2000

4

合同糾紛案件

14000

13000

n

其中結(jié)案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問題.

(Ⅰ)在編號為1、2、3的收案案件中隨機(jī)取1件,求該件是結(jié)案案件的概率;

(Ⅱ)在編號為2的結(jié)案案件中隨機(jī)取1件,求該件是判決案件的概率;

(Ⅲ)在編號為1、23的三類案件中,判決案件數(shù)的平均數(shù)為,方差為S12,如果表中n,表中全部(4類)案件的判決案件數(shù)的方差為S22,試判斷S12S22的大小關(guān)系,并寫出你的結(jié)論(結(jié)論不要求證明).

【答案】(Ⅰ);(Ⅱ);(Ⅲ);

【解析】

)此概率模型為古典概型,分別計算在編號為1、2、3的收案案件中隨機(jī)取1件和取到的是結(jié)案案件的方法數(shù),即得解;

)此題仍為古典概型,分別計算對應(yīng)的事件數(shù),即得解;

)設(shè)4類案件的均值為,則,代入運(yùn)算,得解.

)在編號為12、3的收案案件中隨機(jī)取1件,

共有2400+3000+41009500種取法,

其中取到的是結(jié)案案件方法數(shù)為

2400+2900+40009300種,

設(shè)在收案案件中取1件結(jié)案案件為事件A,

PA;

)在編號為2的結(jié)案案件中隨機(jī)取1件共有2900種取法,

其中是判決案件有1200種取法,

設(shè)在該結(jié)案案件中取1件判決案件為事件B,

PB;

;

設(shè)4類案件的均值為,則

[]

[]

[]

[]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該院派出研究小組分別到氣象局與某醫(yī)院,抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見表:

月份

1

2

3

4

5

6

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(shù)(個)

23

26

30

27

17

13

該研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)恰好是相鄰的兩個月的概率;

2)已知選取的是1月與6月的兩組數(shù)據(jù).

i)請根據(jù)25月份的數(shù)據(jù),求就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程:

ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該研究小組所得的線性回歸方程是否理想?

(參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,點,過的直線與圓交于點,過做直線平行于點

1)求點的軌跡的方程;

2)過的直線與交于、兩點,若線段的中點為,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求的取值范圍;

2)記的極值點為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,,在它們交叉路口點處的東北方向建有一個荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺位于兩條垂直公路的角平分線上,與環(huán)形公路的交點記作.游客游覽荷花池時,需沿公路先到達(dá)環(huán)形公路.為了分流游客,方便游客游覽荷花池,計劃從靠近公路,的環(huán)形公路上選兩處(,關(guān)于直線對稱)修建直達(dá)觀景臺的玻璃棧道.以,所在的直線為軸建立平面直角坐標(biāo)系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù)

1)若百米,點的垂直距離為1百米,求玻璃棧道的總長度;

2)若要使得玻璃棧道的總長度最小為百米,求觀景臺的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論fx)的單調(diào)性;

2)設(shè)a4,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內(nèi)的總濃度(單位:mg/ml),通常用血藥濃度來研究藥物的作用強(qiáng)度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點的橫坐標(biāo)表示服用第種藥后血藥濃度達(dá)到峰值時所用的時間,其它點的橫坐標(biāo)分別表示服用三種新藥后血藥濃度第二次達(dá)到峰值一半時所用的時間(單位:h),點的縱坐標(biāo)表示第種藥的血藥濃度的峰值.(

①記為服用第種藥后達(dá)到血藥濃度峰值時,血藥濃度提高的平均速度,則中最大的是_______;

②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時間,則中最大的是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勒洛三角形是具有類似圓的定寬性的曲線,它是由德國機(jī)械工程專家、機(jī)構(gòu)運(yùn)動學(xué)家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.如圖中的兩個勒洛三角形,它們所對應(yīng)的等邊三角形的邊長比為,若從大的勒洛三角形中隨機(jī)取一點,則此點取自小勒洛三角形內(nèi)的概率為______.

查看答案和解析>>

同步練習(xí)冊答案