7.已知$f(x)=\left\{{\begin{array}{l}{f(x+1),}&{x<2}\\{{2^x},}&{x≥2}\end{array}}\right.$,則f(log23)=( 。
A.12B.6C.4D.2

分析 由已知得f(log23)=f(log23+1)=${2}^{lo{g}_{2}3+1}$,由此能求出結(jié)果.

解答 解:∵$f(x)=\left\{{\begin{array}{l}{f(x+1),}&{x<2}\\{{2^x},}&{x≥2}\end{array}}\right.$,
∴f(log23)=f(log23+1)=${2}^{lo{g}_{2}3+1}$=3×2=6.
故選:B.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)(0,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點(diǎn),若以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$的左、右焦點(diǎn),點(diǎn)P(x0,y0)在橢圓C上.
(Ⅰ)求$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$的最小值;
(Ⅱ)若y0>0且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{F{{\;}_{1}F}_{2}}$=0,已知直線l:y=k(x+1)與橢圓C交于兩點(diǎn)A,B,過點(diǎn)P且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問:四邊形PABQ能否成為平行四邊形?若能,請求出直線l的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x||x-2|≤1},且A∩B=∅,則集合B可能是(  )
A.{2,5}B.{x|x2≤1}C.(1,2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=2lnx-\frac{1}{2}a{x^2}+({2-a})x({a∈R})$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對于?x1,x2∈(0,+∞),且x1<x2,存在正實(shí)數(shù)x0,使得f(x2)-f(x1)=f'(x0)(x2-x1),試判斷$f'({\frac{{{x_1}+{x_2}}}{2}})$與f'(x0)的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?x∈R,使得x2-mx+1≤0成立,則實(shí)數(shù)m的取值范圍為m≥2或m≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)直線m,n是兩條不同的直線,α,β是兩個不同的平面,下列事件中是必然事件的是( 。
A.若m∥α,n∥β,m⊥n,則α⊥βB.若m∥α,n⊥β,m∥n,則α∥β
C.若m⊥α,n∥β,m⊥n,則α∥βD.若m⊥α,n⊥β,m∥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,則復(fù)數(shù)i3-$\frac{2}{i}$=( 。
A.iB.3iC.-iD.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{1+lnx}{x}$,若關(guān)于x的不等式f2(x)+af(x)>0恰有兩個整數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$)B.[$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$)C.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$]D.(-1,-$\frac{1+ln3}{3}$]

查看答案和解析>>

同步練習(xí)冊答案