17.已知函數(shù)f(x)=$\frac{1+lnx}{x}$,若關(guān)于x的不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$)B.[$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$)C.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$]D.(-1,-$\frac{1+ln3}{3}$]

分析 求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)f(x)的單調(diào)區(qū)間,再由f2(x)+af(x)>0求得f(x)的范圍,結(jié)合函數(shù)f(x)的單調(diào)性可得使不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解的實(shí)數(shù)a的取值范圍.

解答 解:∵f′(x)=$\frac{1-(1+lnx)}{{x}^{2}}=-\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
當(dāng)a>0時(shí),f2(x)+af(x)>0?f(x)<-a或f(x)>0,此時(shí)不等式f2(x)+af(x)>0有無(wú)數(shù)個(gè)整數(shù)解,不符合題意;
當(dāng)a=0時(shí),f2(x)+af(x)>0?f(x)≠0,此時(shí)不等式f2(x)+af(x)>0有無(wú)數(shù)個(gè)整數(shù)解,不符合題意;
當(dāng)a<0時(shí),f2(x)+af(x)>0?f(x)<0或f(x)>-a,要使不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解,必須滿足
f(3)≤-a<f(2),得$-\frac{1+ln2}{2}$<a≤$-\frac{1+ln3}{3}$,
故選:C.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查一元二次不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$f(x)=\left\{{\begin{array}{l}{f(x+1),}&{x<2}\\{{2^x},}&{x≥2}\end{array}}\right.$,則f(log23)=( 。
A.12B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)$Q({b\;\;,\;\;\frac{a}})$在橢圓上,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)已知點(diǎn)P,M,N為橢圓C上的三點(diǎn),若四邊形OPMN為平行四邊形,證明四邊形OPMN的面積S為定值,并求該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+6≥0}\end{array}\right.$,若z=ax+y的最大值為3a+9,最小值為3a-3,則a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)S一枚均勻的硬幣4次,出現(xiàn)正面向上的次數(shù)不少于反面向上的次數(shù)的概率為( 。
A.$\frac{5}{16}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知3b=4c,B=2C.
(Ⅰ)求sinB的值;
(Ⅱ)若b=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知tanθ=3,則cos($\frac{3π}{2}$+2θ)=( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)若直線C1與O圓相交于A,B,求弦長(zhǎng)|AB|;
(2)以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為$ρ=2cosθ+2\sqrt{3}sinθ$,圓O和圓C2的交點(diǎn)為P,Q,求弦PQ所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若i為復(fù)數(shù)單位,復(fù)數(shù)z=$\frac{1-ai}{i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線x+2y+5=0上,則實(shí)數(shù)a的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案