分析 (1)推導(dǎo)出PA⊥BC,AB⊥BC從而BC⊥平面PAB,由此能證明平面PBC⊥平面PAB.
(2)以B為原點(diǎn),BC為x軸,BA為y軸,過B作與平面ABCD垂直的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)C到平面PBD的距離.
解答 證明:(1)∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,
又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵BC?平面PBC,∴平面PBC⊥平面PAB.
解:(2)以B為原點(diǎn),BC為x軸,BA為y軸,過B作與平面ABCD垂直的直線為z軸,
建立空間直角坐標(biāo)系,
C(1,0,0),P(0,2,1),B(0,0,0),D(1,1,0),
$\overrightarrow{BC}$=(1,0,0),$\overrightarrow{BP}$=(0,2,1),$\overrightarrow{BD}$=(1,1,0),
設(shè)平面PBD的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BP}=2y+z=0}\\{\overrightarrow{n}•\overrightarrow{BD}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
∴點(diǎn)C到平面PBD的距離:
d=$\frac{|\overrightarrow{BC}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)•|g(x)|是奇函數(shù) | B. | f(x)+|g(x)|是偶函數(shù) | C. | |f(x)|-g(x)是奇函數(shù) | D. | |f(x)|•g(x)是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com