7..求下列函數(shù)的導(dǎo)數(shù)
(1)y=2xlnx
(2)f(x)=${2^{({x^2}-3x+2)}}$.

分析 (1)根據(jù)導(dǎo)數(shù)的運(yùn)算法則計(jì)算即可,
(2)根據(jù)復(fù)合函數(shù)的求導(dǎo)法則計(jì)算即可

解答 解:(1)y′=2(lnx+x•$\frac{1}{x}$)=2lnx+2,
(2)f′(x)=${2^{({x^2}-3x+2)}}$ln2•(x2-3x+2)′=)=(2x-3)${2^{({x^2}-3x+2)}}$ln2

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)點(diǎn)M,N的坐標(biāo)分別為(-2,0),(2,0),直線MP,NP相交于點(diǎn)P,且它們的斜率之積是-$\frac{1}{4}$.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)過定點(diǎn)E(0,2)的直線l與曲線C交于不同的兩點(diǎn)A、B,且∠AOB為鈍角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)已知sinα+cosα=$\frac{12}{13}$,0<α<π,求sinα-cosα;
(Ⅱ)已知向量$\overrightarrow{a}$=(1,sin(π-α)),$\overrightarrow$=(2,cosα),且$\overrightarrow{a}$∥$\overrightarrow$,求sin2α+sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)隨機(jī)變量X~N(2,σ2),且P(X≤4)=0.84,則P(X<0)=0.16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的通項(xiàng)為an=$\frac{4}{11-2n}$,則滿足an+1<an的n的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不論實(shí)數(shù)m取何值,直線(m-1)x-y+2m-1=0都過定點(diǎn)( 。
A.(2,-1)B.(-2,1)C.(1,-2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosθ\\ y=-4+2sinθ\end{array}\right.$(θ為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)已知A(2,0),B(0,2),圓C上任意一點(diǎn)M(x,y),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=m2+2m+(m2+3m+2)i是純虛數(shù),則實(shí)數(shù)m的值是( 。
A.0B.-2C.0或-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)$y=sin({-2\;x-\frac{π}{4}})+1$的周期、對(duì)稱軸、對(duì)稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案