2.從某種設(shè)備中隨機(jī)抽取5個(gè),獲得使用年限 xi(年)與所支出的修理費(fèi)用 yi(萬(wàn)元)的數(shù)據(jù)資料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回歸方程$\widehat{y}$=bx+a;
(2)判斷變量 x與 y之間是正相關(guān)還是負(fù)相關(guān);
(3)估計(jì)使用年限為10年時(shí)維修費(fèi)用是多少.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$為樣本平均值.

分析 (1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;
(2)根據(jù)回歸系數(shù)b的符號(hào)判斷;
(3)把x=10代入回歸方程計(jì)算y.

解答 解:(1)∵$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90,
∴$\overline{x}$=$\frac{\sum_{i=1}^{5}{x}_{i}}{5}$=$\frac{20}{5}=4$,
$\overline{y}=\frac{\sum_{i=1}^{5}{y}_{i}}{5}=\frac{25}{5}=5$,
∴$\stackrel{∧}$=$\frac{112.3-5×4×5}{90-5×{4}^{2}}$=1.23,
$\stackrel{∧}{a}$=5-1.23×4=0.08.
∴回歸方程為$\stackrel{∧}{y}$=1.23x+0.08.
(2)∵$\stackrel{∧}$=1.23>0,
∴變量 x與 y之間是正相關(guān).
(3)當(dāng)x=10時(shí),$\stackrel{∧}{y}$=1.23×10+0.08=12.38.
∴使用年限為10年時(shí)維修費(fèi)用約為12.38萬(wàn)元.

點(diǎn)評(píng) 本題考查了線性回歸方程的求解及數(shù)值估計(jì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.y與x之間的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$必定過(guò)(  )
A.(0,0)點(diǎn)B.($\overline{x}$,$\overline{y}$)點(diǎn)C.(0,$\overline{y}$)點(diǎn)D.($\overline{x}$,0)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.通過(guò)市場(chǎng)調(diào)查,得到某種產(chǎn)品的資金投入x(萬(wàn)元)與獲得的利潤(rùn)y(萬(wàn)元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤(rùn)y23569
(Ⅰ)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程$\stackrel{∧}{y}$=bx+a;
(Ⅲ)現(xiàn)投入資金10萬(wàn)元,求獲得利潤(rùn)的估計(jì)值為多少萬(wàn)元?
(參考公式:$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}(x-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-b\stackrel{∧}{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5-7分鐘,乙每次解答一道幾何題所用的時(shí)間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(Ⅲ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如表提供了某廠生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):
x246810
y565910
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)20噸甲產(chǎn)品的生產(chǎn)能耗是多少噸標(biāo)準(zhǔn)煤?
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,參考數(shù)值:2×5+4×6+6×5+8×9+10×10=236)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x>y>0,m>n,則下列不等式正確的是(  )
A.xm>ymB.x-m≥y-nC.$\frac{x}{n}$>$\frac{y}{m}$D.$x>\sqrt{xy}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,AB=2,BC=3$\sqrt{3}$,∠ABC=30°,AD為BC邊上的高,若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則$\frac{λ}{μ}$等于(  )
A.2B.$\frac{1}{2}$C.$\frac{2}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題正確的是( 。
A.若a<b<0,則ac<bcB.若a>b,c>d,則ac>bd
C.若a>b,則$\frac{1}{a}$<$\frac{1}$D.若$\frac{a}{{c}^{2}}$>$\frac{{c}^{2}}$,c≠0,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一個(gè)階梯形教室共有10排座位,第一排有20個(gè)座位,從第二排起,每一排比前一排多2個(gè)座位,求這個(gè)教室的座位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案