【題目】已知三棱臺ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點D是B1C1的中點,求二面角A1﹣BD﹣B1的余弦值.
【答案】
(1)證明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得: ,從而BC1⊥CC1,
因為平面BB1C1C⊥平面ABC,且AC⊥BC,
所以AC⊥平面BB1C1C,因此BC1⊥AC,
因為AC∩CC1=C,所以BC1⊥平面AA1C1C
(2)解:如圖,以CA,CB所在直線分別為x軸,y軸,點C為原點建立空間直角坐標(biāo)系,則A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1, ),B1(0,3, ),D(0,2, ),A1(3,1, ),
平面BB1D的法向量 =(1,0,0),設(shè)平面AB1D的法向量為 =(x,y,z),
則 ,
令z= ,得 ( , ),
所以所求二面角的余弦值是﹣ =﹣ .
【解析】(1)證明BC1⊥CC1 , BC1⊥AC,即可證明BC1⊥平面AA1C1C(2)以CA,CB所在直線分別為x軸,y軸,點C為原點建立空間直角坐標(biāo)系,求出平面的法向量,即可求二面角A1﹣BD﹣B1的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)當(dāng)時,是否存在正實數(shù),當(dāng)(是自然對數(shù)底數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓:與軸的正半軸交于點,以點為圓心的圓:與圓交于,兩點.
(1)當(dāng)時,求的長;
(2)當(dāng)變化時,求的最小值;
(3)過點的直線與圓A切于點,與圓分別交于點,,若點是的中點,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年,京津冀等地數(shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(。├茫á瘢┧蟮幕貧w方程,預(yù)測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,的首項,且滿足,,其中,設(shè)數(shù)列,的前項和分別為,.
(Ⅰ)若不等式對一切恒成立,求.
(Ⅱ)若常數(shù)且對任意的,恒有,求的值.
(Ⅲ)在(Ⅱ)的條件下且同時滿足以下兩個條件:
(。┤舸嬖谖ㄒ徽麛(shù)的值滿足;
(ⅱ)恒成立.試問:是否存在正整數(shù),使得,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上且通過點的圓與直線相切.
(1)求圓的方程;
(2)已知直線經(jīng)過點,并且被圓C截得的弦長為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.
(1)請計算原棚戶區(qū)建筑用地的面積及的長;
(2)因地理條件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧上設(shè)計一點,使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是,D是AC的中點。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中(為坐標(biāo)原點),已知兩點,,且三角形的內(nèi)切圓為圓,從圓外一點向圓引切線,為切點。
(1)求圓的標(biāo)準(zhǔn)方程.
(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.
(3)已知點在圓上運動,求的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com