【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.
(1)請計(jì)算原棚戶區(qū)建筑用地的面積及的長;
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
【答案】(1) 萬米. 萬平方米.
(2) 所求面積的最大值為萬平方米,此時(shí)點(diǎn)為弧ABC的中點(diǎn).
【解析】試題分析:(1)利用圓內(nèi)接四邊形得到對角互補(bǔ),再利用余弦定理求出相關(guān)邊長,再利用三角形的面積公式和分割法進(jìn)行求解 ;(2)利用余弦定理和基本不等式進(jìn)行求解.
試題解析:(1)根據(jù)題意知,四邊形ABCD內(nèi)接于圓,∴∠ABC+∠ADC=180°.
在△ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC·cos∠ABC,
即AC2=42+62-2×4×6×cos∠ABC.
在△ADC中,由余弦定理,得
AC2=AD2+DC2-2AD·DC·cos∠ADC,即AC2=42+22-2×4×2×cos∠ADC.
又cos∠ABC=-cos∠ADC,
∴cos∠ABC=,AC2=28,即AC=2萬米,
又∠ABC∈(0,π),∴∠ABC=.
∴S四邊形ABCD=S△ABC+S△ADC=×4×6×sin+×2×4×sin=8 (平方萬米).
(2)由題意知,S四邊形APCD=S△ADC+S△APC,
且S△ADC=AD·CD·sin=2 (平方萬米).
設(shè)AP=x,CP=y,則S△APC=xysin=xy.
在△APC中,由余弦定理,得AC2=x2+y2-2xy·cos=x2+y2-xy=28,
又x2+y2-xy≥2xy-xy=xy,
當(dāng)且僅當(dāng)x=y時(shí)取等號,∴xy≤28.
∴S四邊形APCD=2+xy≤2+×28=9 (平方萬米),
故所求面積的最大值為9平方萬米,此時(shí)點(diǎn)P為的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過兩小時(shí)免費(fèi),超過兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按 1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為;兩人租車時(shí)間都不會超過四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))分析,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱臺ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個(gè)正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來解決,首先作一個(gè)通徑為(其中正數(shù)為原立方體的棱長)的拋物線,如圖,再作一個(gè)頂點(diǎn)與拋物線頂點(diǎn)重合而對稱軸垂直的拋物線,且與交于不同于點(diǎn)的一點(diǎn),自點(diǎn)向拋物線的對稱軸作垂線,垂足為,可使以為棱長的立方體的體積為原立方體的2倍.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程;
(2)為使以為棱長的立方體的體積為原立方體的2倍,求拋物線的標(biāo)準(zhǔn)方程(只須以一個(gè)開口方向?yàn)槔?/span>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,平面,,,.是的中點(diǎn),是的中點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面;
(2)若二面角的大小為60°,求∠BDC的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個(gè)定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,為邊的中點(diǎn),下列四個(gè)結(jié)論:(1);(2);(3);(4)正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.數(shù)列滿足且,前9項(xiàng)和為153.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求及使不等式對一切都成立的最小正整數(shù)的值;
(3)設(shè),問是否存在,使得成立?若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com