15.有13名醫(yī)生,其中女醫(yī)生6人現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災(zāi)區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時(shí)至多有3名女醫(yī)生,設(shè)不同的選派方法種數(shù)為N,則下列等式:
①C135-C71C64;②C72C63+C73C62+C74C61+C75;  ③C135-C71C64-C65;   ④C72C113
其中能成為N的算式是②③.

分析 利用直接法、間接法,即可得出結(jié)論.

解答 解:13名醫(yī)生,其中女醫(yī)生6人,男醫(yī)生7人.
利用直接法,2男3女:C72C63;3男2女:C73C62;4男1女:C74C61;5男:C75,所以N=C72C63+C73C62+C74C61+C75;
利用間接法:13名醫(yī)生,任取5人,減去4、5名女醫(yī)生的情況,即N=C135-C71C64-C65;
所以能成為N的算式是②③.
故答案為:②③.

點(diǎn)評 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查組合知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC為鈍角三角形,三邊長分別為3,4,x,則x的取值范圍是( 。
A.(5,7)B.(1,$\sqrt{7}$)C.(1,$\sqrt{7}$)∪(5,7)D.($\sqrt{7}$,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.用籬笆圍一個(gè)面積為64m2的矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí)所用的籬笆最短,最短的籬笆是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知空間向量$\vec a$=(0,1,1),$\vec b$=(1,0,1),則向量$\vec a$與$\vec b$的夾角為( 。
A.60°B.120°C.30°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\overrightarrow{a}$⊥$\overrightarrow$,且$\vec a$=(2,1),$\overrightarrow$=(x,2),則實(shí)數(shù)x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知cosα=$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),則sin2α的值為(  )
A.-$\frac{12}{25}$B.-$\frac{24}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知遞增等比數(shù)列{an}的第3項(xiàng),第5項(xiàng),第7項(xiàng)的積為512,且這三項(xiàng)分別減去1,3,9后構(gòu)成一個(gè)等差數(shù)列,則數(shù)列an的公比為( 。
A.$±\sqrt{2}$B.$±\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.“?x∈[1,2],x2-a≤0”為真命題,則a的取值范圍是a≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=ax2+b(a≠0),若${∫}_{0}^{3}$f(x)dx=3f(x0),則x0=$±\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案