【題目】在某大學(xué)自主招生的面試中,考生要從規(guī)定的6道科學(xué)題,4道人文題共10道題中,隨機(jī)抽取3道作答,每道題答對(duì)得10分,答錯(cuò)或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對(duì)其中的6道科學(xué)題,乙答對(duì)每道題的概率都是,每個(gè)人答題正確與否互不影響.
(1)求考生甲得分的分布列和數(shù)學(xué)期望;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)題意分析,甲的得分情況可能為-15,0,15,30, , , ,于是可寫(xiě)出分布列;(2)乙的得分概率為二項(xiàng)分布,乙得15分的概率為,乙得30分的概率為,所以乙得分不少于15分的概率為,而甲得分不少于15分的概率為,所以甲,乙兩人中至少有一人得分不少于15分的概率為 .
試題解析:(1)設(shè)學(xué)生甲得分的所有取值為,
,
, .
所以甲得分的分布列為
-15 | 0 | 15 | 30 | |
.
(2)記事件:“甲得分不少于分”,記事件:“乙得分不少于分”.
,
.
所以甲、乙兩人中至少有一人得分大于等于分的概率為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過(guò)點(diǎn)的圓心.
(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;
(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線(xiàn)分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以?xún)蓚(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線(xiàn)的方程為,求證:直線(xiàn)與橢圓有且只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線(xiàn)步行到C,另一種是先從A沿索道乘纜車(chē)到B,然后從B沿直線(xiàn)步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車(chē)到B,在B處停留1min后,再?gòu)腂勻速步行到C.假設(shè)纜車(chē)勻速直線(xiàn)運(yùn)動(dòng)的速度為130m/min,山路AC長(zhǎng)為1260m,經(jīng)測(cè)量,cosA= ,cosC=
(1)求索道AB的長(zhǎng);
(2)問(wèn)乙出發(fā)多少分鐘后,乙在纜車(chē)上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)()與軸交于點(diǎn),動(dòng)圓與直線(xiàn)相切,并且與圓相外切,
(1)求動(dòng)圓的圓心的軌跡的方程;
(2)若過(guò)原點(diǎn)且傾斜角為的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,向量,函數(shù).
(1)求的單調(diào)減區(qū)間;
(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到的圖象,求函數(shù)的解析式及其圖象的對(duì)稱(chēng)中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣[x],其中[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù).若關(guān)于x的方程f(x)=kx+k有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=f(x)(x∈R)的圖象過(guò)點(diǎn)(0,﹣3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù) 的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com