【題目】已知,,直線,相交于點,且它們的斜率之積是.

1)求點的軌跡的方程;

2)過點的直線與軌跡交于點,與交于點,過的垂直線交軸于點,求證:.

【答案】1;(2)證明見解析.

【解析】

(1) 直接法求軌跡方程,利用 化簡可得.

(2) 設直線的方程為與橢圓方程聯(lián)解,求出、點坐標,再利用垂直關系求出點坐標,計算得可證.

1)設,則直線的斜率.直線的斜率,

依題意得,整理得

所以點的軌跡的方程為.

2)解法1:設直線的方程為,

聯(lián)立,消去整理得

,所以,即,,

易得,直線的斜率,

,所以直線的方程為,

,所以直線的斜率,

又直線的斜率為,所以,所以.

解法2:設(其中),則直線,

,

所以直線的斜率.

,所以直線的方程為,

所以直線的斜率,直線的斜率

,即,所以.

解法3:設直線,則直線的斜率,

,直線的斜率,

,所以直線的方程為.

,

所以直線的斜率,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】十九世紀末,法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”、“隨機端點”、“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設A為圓O上一個定點,在圓周上隨機取一點B,連接AB,所得弦長AB大于圓O的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】疫情期間,某小區(qū)超市平面圖如圖所示,由矩形與扇形組成,米,米,,經(jīng)營者決定在點處安裝一個監(jiān)控攝像頭,攝像頭的監(jiān)控視角,攝像頭監(jiān)控區(qū)域為圖中陰影部分,要求點在弧上,點在線段上.設.

1)求該監(jiān)控攝像頭所能監(jiān)控到的區(qū)域面積關于的函數(shù)關系式,并求出的取值范圍;

2)求監(jiān)控區(qū)域面積最大時,角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四人進行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標系中方格內的16個棋子(如圖所示),甲從中記下某個棋子的坐標;第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標.告訴丙棋子的縱坐標,告訴丁棋子的橫坐標與縱坐標相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017727日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進,并不斷刷新華語電影票房紀錄.825日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結論錯誤的是(

A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增

B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12

C.在《戰(zhàn)狼2》上映前兩周中,85日,86日達到了票房的高峰期

D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.

(1)求證:平面平面;

(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a是實數(shù),關于z的方程(z22z+5)(z2+2az+1)=04個互不相等的根,它們在復平面上對應的4個點共圓,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為

1)求橢圓的方程;

2)點內一點,為坐標原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,圓心為坐標原點的單位圓OC的內部,且與C有且僅有兩個公共點,直線C只有一個公共點.

1)求C的標準方程;

2)設不垂直于坐標軸的動直線l過橢圓C的左焦點F,直線lC交于A,B兩點,且弦AB的中垂線交x軸于點P,試求的面積的最大值.

查看答案和解析>>

同步練習冊答案