【題目】袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào).

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,試求a,b的值.

【答案】見解析

【解析】1X的分布列為

X

0

1

2

3

4

P

故EX=0×+1×+2×+3×+4×=1.5,DX0-1.52×1-1.52×2-1.52×3-1.52×4-1.52×=2.75.

2由DY=a2DX,得a2×2.75=11,即a=±2,又EY=aEX+b,

故當(dāng)a=2時(shí),1=1.5×2+b,得b=-2;

當(dāng)a=-2時(shí),1=-2×1.5+b,得b=4.

因此,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年365天內(nèi)100天的空氣質(zhì)量指數(shù)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失單位:元,空氣質(zhì)量指數(shù)在區(qū)間對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型當(dāng)150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)200時(shí),造成的經(jīng)濟(jì)損失為700元;當(dāng)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

1試寫出的表達(dá)式;

2試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過600元的概率;

3若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表并判斷

能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.82

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為,

(1);

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1若關(guān)于的方程在區(qū)間上有兩個(gè)不同的解

的取值范圍;

,求的取值范圍;

2設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“微課、翻轉(zhuǎn)課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“微課、翻轉(zhuǎn)課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

記成績不低于70分者為“成績優(yōu)良”

1由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

附:

臨界值表:

2現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,四邊形為直角梯形,,,, 平面平面.

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCDCD上異于點(diǎn)C,D的動(dòng)點(diǎn),將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個(gè)說法中正確的個(gè)數(shù)是

存在點(diǎn)E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.

(1)求證:數(shù)列為等差數(shù)列;

(2)設(shè)是數(shù)列的前項(xiàng)和,求使對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

(1)求A的大;

(2)求函數(shù)y=2sin2B+cos(取最大值時(shí),角B的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案