7.設(shè)集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},則(  )
A.M?NB.M=NC.N?MD.M∩N=∅

分析 求出集合M={奇數(shù)},N={整數(shù)},從而得到M?N.

解答 解:∵集合M={x|x=2k+1,k∈Z}={奇數(shù)},
N={x|x=k+2,k∈Z}={整數(shù)},
∴M?N.
故選A.

點評 本題考查兩個集合的包含關(guān)系的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意集合的表示法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1和側(cè)面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F(xiàn)分別為AD,A1D1的中點.
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1
(Ⅲ)若CF∥平面A1BE,求棱BC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={0,1},B={x|x2+x-2=0},則A∪B=( 。
A.B.{1}C.{-2,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中,隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計的得到頻率分布表和頻率分布直方圖如下:
 組數(shù)分組(單位:歲)頻數(shù)頻率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合計n1.00
(1)求出表中的a,b的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進(jìn)行問卷調(diào)查,再從這6名市民中隨機(jī)抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知隨機(jī)變量ξ的分布列為下表所示,若$Eξ=\frac{1}{4}$,則Dξ=( 。
ξ-101
P$\frac{1}{3}$ab
A.$\frac{5}{6}$B.$\frac{41}{48}$C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,數(shù)列{bn}的前n項和Sn,求證:${S_n}<\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題“?x0∈R,x02+(a-1)x0+1<0”是真命題,則實數(shù)a的取值范圍是( 。
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商家在網(wǎng)上銷售一種商品,從該商家的銷售數(shù)據(jù)中抽取6天的價格與銷量的對應(yīng)數(shù)據(jù),如下表所示:
價格x(百元)456789
銷量y(件/天)908483807568
(Ⅰ)由表中數(shù)據(jù),看出可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測當(dāng)價格為1000元時,每天的商品的銷量為多少;
(Ⅱ)若以從這6天中隨機(jī)抽取2天,至少有1天的價格高于700元的概率.
參考數(shù)據(jù):$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某市對大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補貼,貸款期限分為6個月、12個月、18個月、24個月、36個月五種,對于這五種期限的貸款政府分別補貼200元、300元、300元、400元、400元,從2016年享受此項政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如表:
 貸款期限  6個月  12個月  18個月  24個月  36個月
 頻數(shù) 20 40 20 10 10
(Ⅰ)若小王準(zhǔn)備申請此項貸款,求其獲得政府補貼不超過300元的概率(以上表中各項貸款期限的頻率作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率);
(Ⅱ)若小王和小李同時申請此項貸款,求兩人所獲得政府補貼之和不超過600元的概率.

查看答案和解析>>

同步練習(xí)冊答案