【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為.如圖是根據(jù)臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.

(1)結(jié)合圖,寫出集合;

(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);

(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述臺凈水器在購機的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應分別是多少?

【答案】(1);(2)0.3;(3)見解析.

【解析】

1)根據(jù)直方圖和一級濾芯和二級濾芯之間的關(guān)系,可得答案;

2)更換二級濾芯的費用大于元,即更換4個二級濾芯,轉(zhuǎn)化為更換12個一級濾芯,由直方圖得出答案;

(3),,可以分為兩種情況,分別算出其平均數(shù),得到結(jié)論

(1)由題意可知當一級濾芯更換、個時,二級濾芯需要更換個,

當一級濾芯更換個時,二級濾芯需要更換個,所以

(2)由題意可知二級濾芯更換個,需元,二級濾芯更換個,需元,

臺凈水器中,二級濾芯需要更換個的凈水器共臺,二級濾芯需要更換個的凈水器共臺,

設(shè)“一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元”為事件,所以;

(3)因為,

(i)若,

則這臺凈水器在更換濾芯上所需費用的平均數(shù)為

(ii)若,

則這臺凈水器在更換濾芯上所需費用的平均數(shù)為

所以如果客戶購買凈水器的同時購買備用濾芯的總數(shù)為個,

客戶應該購買一級濾芯個,二級濾芯個。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調(diào)查了40名群眾,并將他們隨機分成兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評分,組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖所示的莖葉圖.

(Ⅰ)根據(jù)莖葉圖比較群眾對兩個階段的創(chuàng)文工作滿意度評分的平均值和集中程度(不要求計算出具體值,給出結(jié)論即可);

(Ⅱ)完成下面的列聯(lián)表,并通過計算判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

合計

第一階段

第二階段

合計

參考公式:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的極值;

(2)若,是否存在整數(shù)使對任意成立?若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,為邊的中點,沿折起,點折至處(平面),若為線段的中點,則在折起過程中,下列說法錯誤的是(

A.始終有平面

B.不存在某個位置,使得

C.在某個球面上運動

D.一定存在某個位置,使得異面直線所成角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:

預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比稱為直線關(guān)于圓的距離比”.

(1)設(shè)圓求過點P的直線關(guān)于圓的距離比的直線方程;

2)若圓軸相切于點A且直線關(guān)于圓C的距離比求出圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案