【題目】已知橢圓的左頂點為,上頂點為,右焦點為,離心率為,的面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸上的兩個動點,且,直線分別與橢圓交于兩點.

(。┣的面積最小值;

(ⅱ)證明:三點共線.

【答案】(Ⅰ)

(Ⅱ)(。2;

(ⅱ)證明過程見解析.

【解析】

(Ⅰ)根據(jù)離心率可以得到等式,由的面積為,又得到一個等式,結合,可以求出的值,這樣就求出橢圓方程;

(Ⅱ)(。┰O出兩點坐標,根據(jù),可以得到兩點坐標之間的關系,求出的面積的表達式,利用基本不等式求出的面積最小值;

(ⅱ)直線的方程與橢圓方程聯(lián)立,求出點坐標,同理求出的坐標,求出直線的斜率,根據(jù)兩點坐標之間的關系,可以證明出直線的斜率相等,又過同一點,這樣就可以證明三點共線.

(Ⅰ)由題意可知:,離心率為

因為的面積為,所以

所以,因此,橢圓的方程為;

(Ⅱ)設,

,所以.

(。┰O的面積為,

,當且僅當時,取等號,所以的面積最小值為2;

(ⅱ),直線的方程為:與橢圓的方程聯(lián)立得

所以有,,

,同理求出,所以,

,所以,直線過同一點,斜率相等,所以三點共線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】口袋里裝有編號為12,34的四個小球,有放回的抽取兩次,記錄兩次取到小球的編號分別為.獎勵規(guī)則如下:

①若,則獎勵玩具一個;

②若,則獎勵水杯一個;

③其余情況獎勵飲料一瓶.

小亮準備參加此項活動.

(Ⅰ)求小亮獲得玩具的概率;

(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的菱形中,,于點,將沿折起到的位置,使,如圖2.

1)求證:平面;

2)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的一個頂點與拋物線的焦點重合,,分別是橢圓的左、右焦點,離心率,過橢圓右焦點的直線與橢圓交于,兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;

(Ⅲ)設點是一個動點,若直線的斜率存在,且中點,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知aR,命題p:“x[1,2],x2﹣a≥0”,命題q:“xR,x2+2ax+2﹣a=0”.

(1)若命題p為真命題,求實數(shù)a的取值范圍;

(2)若命題“pq”為真命題,命題“pq”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為矩形,平面的中點

1)證明:平面;

2)證明:平面

3)若三棱錐的體積為,求點D到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)若關于x的不等式ax23x+20aR)的解集為{x|x1xb},求a,b的值;

2)解關于x的不等式ax23x+25axaR).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,,數(shù)列的前n項和滿足的等比中項,.

(Ⅰ)求的值;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)設,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為:為參數(shù),),以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)當時,寫出直線的普通方程和曲線的直角坐標方程;

2)若點,設曲線與直線交于點,求的最小值.

查看答案和解析>>

同步練習冊答案