【題目】(1)若關(guān)于x的不等式ax2﹣3x+2>0(a∈R)的解集為{x|x<1或x>b},求a,b的值;
(2)解關(guān)于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
【答案】(1) ;(2) 當(dāng),解集為;當(dāng)或時,解集為;當(dāng)時,解集為;當(dāng)時,解集為
【解析】
(1) 利用三個二次關(guān)系可知的根為,代入可求得值,進(jìn)而解不等式可得到邊界值值;
(2)將不等式變形,求得與不等式對應(yīng)的方程的根,結(jié)合相應(yīng)的函數(shù)圖像可得到不等式的解集,求解時注意分兩種情況討論
(1) 不等式的解集為1或,
所以是一元二次方程的兩個實(shí)數(shù)根,
,解得,
.
(2)等式化為,即.
當(dāng)時,化為解得,其解集為,
當(dāng)或時,解得或,其解集為,
當(dāng)時, ,解得或,其解集為,
當(dāng)時,解集為.
綜上所述當(dāng),解集為;當(dāng)或時,解集為;當(dāng)時,解集為;當(dāng)時,解集為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查人們在購物時的支付習(xí)慣,某超市對隨機(jī)抽取的600名顧客的支付方式進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表所示:
支付方式 | 微信 | 支付寶 | 購物卡 | 現(xiàn)金 |
人數(shù) | 200 | 150 | 150 | 100 |
現(xiàn)有甲、乙、丙三人將進(jìn)入該超市購物,各人支付方式相互獨(dú)立,假設(shè)以頻率近似代替概率.
(1)求三人中使用微信支付的人數(shù)多于現(xiàn)金支付人數(shù)的概率;
(2)記為三人中使用支付寶支付的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有班公交車到達(dá)該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.
(2)若,滿足不等式成立的正整數(shù)解有且僅有一個,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )
A.A,M,O三點(diǎn)共線B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的圖象過點(diǎn)。
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;
(3)若函數(shù), ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體EF﹣ABCD中,四邊形ABCD是菱形,AB=4,∠BAD=60°,AC,BD相交于O,EF∥AC,點(diǎn)E在平面ABCD上的射影恰好是線段AO的中點(diǎn).
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)若直線AE與平面ABCD所成的角為45°,求平面DEF與平面ABCD所成角(銳角)的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com