1.已知實(shí)數(shù)x,y滿足x2+y2=4,則4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值是22+4$\sqrt{5}$.

分析 利用圓的參數(shù)方程,結(jié)合配方法,即可求出4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值.

解答 解:由題意,設(shè)x=2cosα,y=2sinα,
則t=2x+y=4cosα+2sinα=2$\sqrt{5}$sin(α+θ)∈[-2$\sqrt{5}$,2$\sqrt{5}$].
4(x-$\frac{1}{2}$)2+(y-1)2+4xy=4x2+4xy+y2-4x-2y+2=(2x+y)2-2(2x+y)+2=(t-1)2+1
∴t=-2$\sqrt{5}$時(shí),4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值是22+4$\sqrt{5}$.
故答案為:22+4$\sqrt{5}$.

點(diǎn)評(píng) 本題考查4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值,考查圓的參數(shù)方程,考查配方法的運(yùn)用,正確變形是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{π+1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將數(shù)字1,2,3,4,5,6書寫在每一個(gè)骰子的六個(gè)表面上,做成6枚一樣的骰子.分別取三枚同樣的這種骰子疊放成如圖A和B所示的兩個(gè)柱體,則柱體A和B的表面(不含地面)數(shù)字之和分別是( 。
A.47,48B.47,49C.49,50D.50,49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知AB=AC,圓O是△ABC的外接圓,CD⊥AB,CE是圓O的直徑.過點(diǎn)B作圓O的切線交AC的延長(zhǎng)線于點(diǎn)F.
(Ⅰ)求證:AB•CB=CD•CE;
(Ⅱ)若$BC=\sqrt{2}$,$BF=2\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)求f(x)在區(qū)間[1,+∞)上的最小值;
(Ⅲ)在(Ⅰ)的條件下,若h(x)=x2-f(x),求證:當(dāng)1<x<e2時(shí),恒有$x<\frac{4+h(x)}{4-h(x)}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)(x∈R),f′(x)存在,記g(x)=f′(x),且g′(x)也存在,g′(x)<0.
(1)求證:f(x)≤f(x0)+f′(x0)(x-x0);(x0∈R)
(2)設(shè)${λ_i}∈{R^+}(i=1,2,3,…$n),且λ12+…+λn=1,xi∈R(i=1,…,n)(n∈N+
求證:λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x12x2+…+λnxn
(3)已知a,f(a),f[f(a)],f{f[(f(a)]}是正項(xiàng)的等比數(shù)列,求證:f(a)=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x2+2a|x|+a2-6的圖象與x軸有三個(gè)不同的交點(diǎn),函數(shù)g(x)=f(x)-b有4個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是(-6,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是一個(gè)三棱錐的三視圖,則該三棱錐的外接球的表面積為( 。
A.$\frac{\sqrt{3}}{2}$πB.πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案