精英家教網 > 高中數學 > 題目詳情

【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,點E是棱AA1的中點,則異面直線DE與BC所成的角的余弦值是

【答案】
【解析】解:∵BC∥AD,
∴∠ADE是異面直線DE與BC所成的角,
∵棱長為2的正方體ABCD﹣A1B1C1D1中,
AD=2,AE=1,∴DE= ,
∴cos∠ADE= =
∴異面直線DE與BC所成的角的余弦值是
所以答案是:

【考點精析】本題主要考查了異面直線及其所成的角的相關知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】等軸雙曲線C的中心在原點,焦點在x軸上,雙曲線C與拋物線y2=16x的準線交于A,B兩點,|AB|=4 ,則雙曲線C的實軸長為(
A.
B.2
C.4
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想數列{an}的通項公式,并用數學歸納法加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +lnx在(1,+∞)上是增函數,且a>0.
(1)求a的取值范圍;
(2)求函數g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)設a>1,b>0,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求證:直線l恒過定點;
(2)求直線l被圓C截得的弦長最長與最短的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知P是圓x2+y2=36的圓心,R是橢圓 上的一動點,且滿足
(1)求動點Q的軌跡方程
(2)若直線y=x+1與曲線Q相交于A、B兩點,求弦AB的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(用空間向量坐標表示解答)已知正三棱柱ABC﹣A1B1C1的各棱長都是4,E是BC的中點,F在CC1上,且CF=1.

(1)求證:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我校為進行“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S(平方米)的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設矩形AMPN健身場地每平方米的造價為 元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價為 元(k為正常數).

(1)試用x表示S,并求S的取值范圍;
(2)求總造價T關于面積S的函數T=f(S);
(3)如何選取|AM|,使總造價T最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知對任意實數x,不等式mx2﹣(3﹣m)x+1>0成立或不等式mx>0成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案