【題目】我校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場(chǎng)地每平方米的造價(jià)為 元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為 元(k為正常數(shù)).

(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).

【答案】
(1)解:在Rt△PMC中,顯然|MC|=30﹣x,∠PCM=60°,

矩形AMPN的面積 ,x∈[10,20],

由x(30﹣x)≤( 2=225,當(dāng)x=15時(shí),可得最大值為225 ,

當(dāng)x=10或20時(shí),取得最小值200 ,

于是 為所求.


(2)解:矩形AMPN健身場(chǎng)地造價(jià)T1=

又△ABC的面積為 ,即草坪造價(jià)T2= ,

由總造價(jià)T=T1+T2,

,


(3)解:∵

當(dāng)且僅當(dāng) 時(shí)等號(hào)成立,

此時(shí) ,解得x=12或x=18,

答:選取|AM|的長(zhǎng)為12米或18米時(shí)總造價(jià)T最低


【解析】(1)根據(jù)題意,得到健身場(chǎng)地的面積,再結(jié)合矩形的面積計(jì)算公式求出面積,由二次函數(shù)的性質(zhì)求得范圍,(2)由三角形的面積和題意得到總造價(jià),得到范圍,(3)使用均值不等式得到造價(jià)最低時(shí)的x=12或x=18.
【考點(diǎn)精析】掌握函數(shù)的最值及其幾何意義和函數(shù)的值是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱AA1的中點(diǎn),則異面直線DE與BC所成的角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘船在航行過(guò)程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時(shí),拱橋最高點(diǎn)距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無(wú)阻,如圖所示.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時(shí)圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過(guò)橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問(wèn):船身至少降低多少米才能通過(guò)橋洞?(精確到0.1m,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2x+c,且f(x)>0的解集是
(1)求f(2)的最小值及f(2)取最小值時(shí)f(x)的解析式;
(2)在f(2)取得最小值時(shí),若對(duì)于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】仙游某家具城生產(chǎn)某種家具每件成本為3萬(wàn)元,每件售價(jià)為x萬(wàn)元(x>3),月銷(xiāo)量為t件,經(jīng)驗(yàn)表明,t= +10(x﹣6)2 , 其中3<x<6,a為常數(shù).已知銷(xiāo)售價(jià)格為5萬(wàn)元時(shí),月銷(xiāo)量為11件.
(1)求a的值;
(2)求售價(jià)定為多少時(shí),該家具的月利潤(rùn)最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓中心是原點(diǎn)O,它的短軸長(zhǎng)為 ,右焦點(diǎn)F(c,0)(c>0),它的長(zhǎng)軸長(zhǎng)為2a(a>c>0),直線l: 與x軸相交于點(diǎn)A,|OF|=2|FA|,過(guò)點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn).
(1)求橢圓的方程和離心率;
(2)若 ,求直線PQ的方程;
(3)設(shè) (λ>1),過(guò)點(diǎn)P且平行于直線l的直線與橢圓相交于另一點(diǎn)M,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P在圓O:x2+y2=8上運(yùn)動(dòng),PD⊥x軸,D為垂足,點(diǎn)M在線段PD上,滿足
(1)求點(diǎn)M的軌跡方程;
(2)過(guò)點(diǎn)Q(1, )作直線l與點(diǎn)M的軌跡相交于A、B兩點(diǎn),使點(diǎn)Q為弦AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD.在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)BP=t.
(I)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值;
(Ⅱ)設(shè)探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米),求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案