分析 方法一:由圖形的對稱性質(zhì)可得,方法二,S=${∫}_{\frac{π}{4}}^{π}$sinxdx-${∫}_{\frac{π}{4}}^{\frac{π}{2}}$cosxdx,分別根據(jù)定積分的定義即可求出.
解答 解:方法一:由圖形的對稱性質(zhì)可得,$S=\frac{1}{2}\int_{\frac{π}{4}}^{\frac{5π}{4}}{(sinx-cosx)dx=\frac{1}{2}}(cos\frac{π}{4}+sin\frac{π}{4})-\frac{1}{2}(cos\frac{5π}{4}+sin\frac{5π}{4})=\sqrt{2}$.
方法二:由圖圖可知,S=${∫}_{\frac{π}{4}}^{π}$sinxdx-${∫}_{\frac{π}{4}}^{\frac{π}{2}}$cosxdx=(1+$\frac{\sqrt{2}}{2}$)-(1-$\frac{\sqrt{2}}{2}$)=$\sqrt{2}$
故答案為:$\sqrt{2}$
點評 本題考查了定積分在幾何中的應(yīng)用,以及正弦余弦函數(shù)的圖象,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,2) | B. | ($\frac{1}{3}$,3) | C. | [1,3] | D. | [$\frac{1}{4}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\sqrt{26}$+$\sqrt{2}$,+∞) | B. | [$\sqrt{26}$-$2\sqrt{2}$,+∞) | C. | [$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$) | D. | [$\sqrt{26}$-$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com