分析 (Ⅰ)直線x=ny+4與拋物線C聯(lián)立可得y2-4ny-16=0,利用韋達定理及向量的數量積公式即可證明結論;
(Ⅱ)求出M,N的坐標,計算|MF|,|NF|,即可證明結論.
解答 證明:(Ⅰ)設A(x1,y1)、B(x2,y2),
直線x=ny+4與拋物線C聯(lián)立可得y2-4ny-16=0,
∴y1+y2=4n,y1y2=-16,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}}{16}$+y1y2=0;
(Ⅱ)證明:將點M,N的橫坐標分別代入直線l:y0y=2(x+x0),
得M(1,$\frac{2+2{x}_{0}}{{y}_{0}}$),N(-1,$\frac{-2+2{x}_{0}}{{y}_{0}}$),
∵F(1,0),∴|MF|=|$\frac{2+2{x}_{0}}{{y}_{0}}$|,|NF|=$\sqrt{4+(\frac{-2+2{x}_{0}}{{y}_{0}})^{2}}$=$\frac{2}{|{y}_{0}|}\sqrt{{{y}_{0}}^{2}+({x}_{0}-1)^{2}}$,
∴$\frac{MF|}{|NF|}$=|$\frac{2+2{x}_{0}}{{y}_{0}}$÷$\frac{2}{|{y}_{0}|}\sqrt{{{y}_{0}}^{2}+({x}_{0}-1)^{2}}$=$\frac{1+{x}_{0}|}{\sqrt{4{x}_{0}+({x}_{0}-1)^{2}}}$=1,
∴點P在拋物線C上移動時,$\frac{|MF|}{|NF|}$恒為定值1.
點評 本題考查直線與拋物線的綜合運用,考查韋達定理,向量知識的運用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x={t^2}}\\{y={t^4}}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=sint}\\{y={{sin}^2}t}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 9 | B. | 3 | C. | $\sqrt{109}$ | D. | 3$\sqrt{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com