12.已知復(fù)數(shù)$z=\frac{1+3i}{1-i}$,則共軛復(fù)數(shù)$\overline z$所對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$z=\frac{1+3i}{1-i}$=$\frac{(1+3i)(1+i)}{(1-i)(1+i)}$=$\frac{-2+4i}{2}$=-1+2i,
則共軛復(fù)數(shù)$\overline z$=-1-2i所對應(yīng)的點(-1,-2)位于第三象限.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.角A是△ABC的一個內(nèi)角,且$sin({A+\frac{π}{4}})=\frac{3}{5}$,則$tan({A+\frac{π}{4}})$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項式(x3+$\frac{1}{{x}^{4}}$)n的展開式中,第二、三、四項二項式系數(shù)成等差數(shù)列,則展開式中的常數(shù)項是(  )
A.21B.35C.56D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若P(2,-1)為圓x2+y2-2x-24=0的弦AB的中點,則直線AB的方程是( 。
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在直角坐標(biāo)系xOy中,將直線y=$\frac{x}{2}$與直線x=1及x軸所圍成的圖形(陰影部分)繞x軸旋轉(zhuǎn)一周得到一個圓錐,圓錐的體積V圓錐=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}$x3|${\;}_{0}^{1}$=$\frac{π}{12}$.據(jù)此類比:將曲線y=x3(x≥0)與直線y=8及y軸所圍成的圖形繞y軸旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體,該旋轉(zhuǎn)體的體積V=$\frac{96π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\frac{x}{e^x}$,定義f1(x)=f'(x),f2(x)=f1′(x),f3(x)=f2′(x),…fn+1(x)=fn′(x),經(jīng)計算f1(x)=$\frac{1-x}{e^x},{f_2}(x)=\frac{x-2}{e^x},{f_3}(x)=\frac{3-x}{e^x}$,…,則fn(x)=$\frac{(-1)^{n}(x-n)}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是各項均不為0的正項數(shù)列,Sn為前n項和,且滿足2$\sqrt{S_n}={a_n}$+1,n∈N*,若不等式$\sqrt{S_n}$λ≤2an+1+8(-1)n對任意的n∈N*恒成立,求實數(shù)λ的最大值為(  )
A.-21B.-15C.-9D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.存在θ∈R,使得關(guān)于θ的不等式cos2θ>2mcosθ-4m+7成立,則實數(shù)m的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若A:B:C=3:5:7,則角A,B,C的弧度數(shù)分別為$\frac{π}{5}$,$\frac{π}{3}$,$\frac{7π}{15}$.

查看答案和解析>>

同步練習(xí)冊答案