分析 根據(jù)已知條件,等價(jià)轉(zhuǎn)化成cos2θ-2mcosθ+4m-2>0成立,然后,換元法t=cosθ,-1≤t≤1,分離變量m,求出函數(shù)的最小值,即可實(shí)數(shù)m的取值范圍.
解答 解:存在θ∈R,關(guān)于θ的不等式cos2θ>2mcosθ-4m+7恒成立,
即2cos2θ-2mcosθ+4m-8>0成立,即:cos2θ-mcosθ+2m-4>0.由θ∈R,則-1≤cosθ≤1,
可得m>$\frac{co{s}^{2}θ-4}{cosθ-2}$=cosθ+2.
cosθ+2∈[1,3],
存在θ∈R,使得關(guān)于θ的不等式cos2θ>2mcosθ-4m+7成立,
可得m>1
故答案為:(1,+∞).
點(diǎn)評(píng) 本題重點(diǎn)考查了三角公式、同角三角函數(shù)基本關(guān)系式中的平方關(guān)系,分離變量求解函數(shù)的最小值,考查轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 364 | B. | 365 | C. | 728 | D. | 730 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | 28 | D. | -28 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com