2.某研發(fā)公司研制出一款保護(hù)視力的護(hù)眼儀,并在新疆某中學(xué)的甲、乙、丙、丁四個(gè)班級(jí)中試用,這四個(gè)班級(jí)人數(shù)的條形圖如下,為了了解學(xué)生護(hù)眼儀的使用情況,對(duì)四個(gè)班的學(xué)生進(jìn)行了問卷調(diào)查,然后按分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
 甲班 乙班 丙班 丁班
滿意  50% 80% 100% 60%
 一般 25% 0 0 0
 不滿意 25% 20% 040%
(1)若學(xué)生A在甲班,求學(xué)生A的調(diào)查問卷被選中的概率;
(2)若需從調(diào)查問卷被選中且填寫不滿意的學(xué)生中再選2人進(jìn)行訪談,求這兩人中至少有一人是丁班學(xué)生的概率.

分析 (1)由條形圖可得,甲乙丙丁四個(gè)班的人數(shù)共有200人,甲班學(xué)生40人,由分層抽樣可得甲班中抽取的人數(shù);
(2)由圖表可知,從甲乙丙丁四個(gè)班中抽取的人數(shù)為4,5,6,5,其中不滿意的人數(shù)分別為1,1,0,2個(gè),列舉法求出所有事件和滿足條件的事件數(shù),計(jì)算概率.

解答 解:(1)由條形圖可得,由條形圖可得,
甲,乙,丙,丁四個(gè)班的人數(shù)共有200人,
其中甲班人數(shù)為40人,
由分層抽樣可得從甲班中抽取了20×$\frac{40}{200}$=4份;
所以學(xué)生A被選中進(jìn)行問卷調(diào)查的概率為P=$\frac{4}{40}$=0.1;
(2)由圖表可知,甲、乙、丙、丁四個(gè)班分別接受調(diào)查的人數(shù)為4,5,6,5,
其中不滿意的人數(shù)分別為1,1,0,2個(gè);記甲班不滿意的學(xué)生是a;
乙班不滿意的學(xué)生是b;丁班不滿意的學(xué)生是c,d;
從不滿意的學(xué)生中選出2人,共有
(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6個(gè)基本事件,
其中含丁班學(xué)生的基本事件是
(a,c),(a,d),(b,c),(b,d),(c,d)5個(gè)基本事件,
故所求的概率為P=$\frac{5}{6}$.

點(diǎn)評(píng) 本題主要考查了頻率分布直方圖的應(yīng)用問題,從不同的統(tǒng)計(jì)圖中得到必要的信息是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆江西南昌市新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練五數(shù)學(xué)試卷(解析版) 題型:選擇題

( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{αn}的前n項(xiàng)和sn=3n(λ-n)-6,若數(shù)列{an}單調(diào)遞減,則λ的取值范圍是( 。
A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.正三棱柱ABC-A1B1C1,E,F(xiàn),G為 AB,AA1,A1C1的中點(diǎn),則B1F與面GEF成角的正弦值(  )
A.$\frac{5}{6}$B.$\frac{3}{5}$C.$\frac{3\sqrt{3}}{10}$D.$\frac{3\sqrt{6}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓O:x2+y2=4上三點(diǎn)A,B,C,且$\overrightarrow{OA}$=$\overrightarrow{BC}$,則$\overrightarrow{AC}$•$\overrightarrow{BA}$=( 。
A.6B.-2$\sqrt{3}$C.-6D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求證:;

(2)若,,求的最大值;

(3)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=a+x+log2(-x),其中a∈(-4,5),則f(4)>0的概率為( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面直角坐標(biāo)系中,方程$\frac{|x|}{2}$+$\frac{|y|}{4}$=1所表示的曲線是( 。
A.橢圓B.三角形C.菱形D.兩條平行線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某公司為感謝全體員工的辛勤勞動(dòng),決定在年終答謝會(huì)上,通過摸球方式對(duì)全公司1000位員工進(jìn)行現(xiàn)金抽獎(jiǎng).規(guī)定:每位員工從裝有4個(gè)相同質(zhì)地球的袋子中一次性隨機(jī)摸出2個(gè)球,這4個(gè)球上分別標(biāo)有數(shù)字a、b、c、d,摸出來的兩個(gè)球上的數(shù)字之和為該員工所獲的獎(jiǎng)勵(lì)額X(單位:元).公司擬定了以下三個(gè)數(shù)字方案:
方案abcd
100100100500
100100500500
200200400400
(Ⅰ)如果采取方案一,求X=200的概率;
(Ⅱ)分別計(jì)算方案二、方案三的平均數(shù)$\overline{X}$和方差s2,如果要求員工所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,方案二和方案三選擇哪個(gè)更好?
(Ⅲ)在投票選擇方案二還是方案三時(shí),公司按性別分層抽取100名員工進(jìn)行統(tǒng)計(jì),得到如下不完整的2×2列聯(lián)表.請(qǐng)將該表補(bǔ)充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?
方案二方案三合計(jì)
男性1248                   60           
女性6        3440
合計(jì)1882100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

同步練習(xí)冊(cè)答案