【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)蓬勃發(fā)展新機(jī)遇,2016年雙11期間,某網(wǎng)絡(luò)購(gòu)物平臺(tái)推銷了A,B,C三種商品,某網(wǎng)購(gòu)者決定搶購(gòu)這三種商品,假設(shè)該名網(wǎng)購(gòu)者都參與了A,B,C三種商品的搶購(gòu),搶購(gòu)成功與否相互獨(dú)立,且不重復(fù)搶購(gòu)?fù)环N商品,對(duì)A,B,C三件商品搶購(gòu)成功的概率分別為a,b, ,已知三件商品都被搶購(gòu)成功的概率為 ,至少有一件商品被搶購(gòu)成功的概率為
(1)求a,b的值;
(2)若購(gòu)物平臺(tái)準(zhǔn)備對(duì)搶購(gòu)成功的A,B,C三件商品進(jìn)行優(yōu)惠減免,A商品搶購(gòu)成功減免2百元,B商品搶購(gòu)成功減免4比百元,C商品搶購(gòu)成功減免6百元.求該名網(wǎng)購(gòu)者獲得減免總金額(單位:百元)的分別列和數(shù)學(xué)期望.

【答案】
(1)解:由題意,得 ,

因?yàn)閍>b,解得


(2)解:由題意,令網(wǎng)購(gòu)者獲得減免的總金額為隨機(jī)變量X(單位:百元),

則X的值可以為0,2,4,6,8,10,12.

; ; ;

所以X的分布列為:

X

0

2

4

6

8

10

12

P

于是有


【解析】(Ⅰ)由題意利用相互獨(dú)立及其對(duì)立事件的概率計(jì)算公式可得 .(Ⅱ)由題意,令網(wǎng)購(gòu)者獲得減免的總金額為隨機(jī)變量X(單位:百元),則X的值可以為0,2,4,6,8,10,12.再利用相互獨(dú)立事件的概率計(jì)算公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:若定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),則x∈R,f(﹣x)≠f(x).命題q:f(x)=x|x|在(﹣∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù).則下列判斷錯(cuò)誤的是(
A.p為假
B.¬q為真
C.p∨q為真
D.p∧q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+ |+|x﹣a|(a>0) (Ⅰ)證明:f(x)≥2 ;
(Ⅱ)當(dāng)a=1時(shí),求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AB,CD1的中點(diǎn),AA1=AD=1,AB=2.
(1)求證:EF∥平面BCC1B1;
(2)求證:平面CD1E⊥平面D1DE;
(3)在線段CD1上是否存在一點(diǎn)Q,使得二面角Q﹣DE﹣D1為45°,若存在,求 的值,不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:存在向量 , ,使得 =| || |,命題q:對(duì)任意的向量 , ,若 = ,則 = .則下列判斷正確的是(
A.命題p∨q是假命題
B.命題p∧q是真命題
C.命題p∨(¬q)是假命題
D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+ax(a∈R)
(1)試確定函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)設(shè)x1 , x2是函數(shù)f(x)的兩個(gè)零點(diǎn),當(dāng)x1+x2≤2時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的參數(shù)方程為 ,以直角坐標(biāo)系原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系。
(1)求曲線C的極坐標(biāo)方程;
(2)若直線 的極坐標(biāo)方程為 ,求直線 被曲線C截得的弦長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案