【題目】過(guò)雙曲線x2 =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

【答案】B
【解析】解:圓C1:(x+4)2+y2=4的圓心為(﹣4,0),半徑為r1=2;

圓C2:(x﹣4)2+y2=1的圓心為(4,0),半徑為r2=1,

設(shè)雙曲線x2 =1的左右焦點(diǎn)為F1(﹣4,0),F(xiàn)2(4,0),

連接PF1,PF2,F(xiàn)1M,F(xiàn)2N,可得

|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22

=(|PF1|2﹣4)﹣(|PF2|2﹣1)

=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3

=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥22c﹣3=28﹣3=13.

當(dāng)且僅當(dāng)P為右頂點(diǎn)時(shí),取得等號(hào),

即最小值13.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,則實(shí)數(shù)a的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是(

A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當(dāng)x=4時(shí),f(x)取極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣1﹣ ,x∈R.
(Ⅰ)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)F(x)=f(x)+f(﹣x)+2+x2 , 求證:F(1)F(2)…F(n)>(en+1+2) (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過(guò)右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長(zhǎng)為短軸長(zhǎng)的2 倍.
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問(wèn)物幾何?”人們把此類題目稱為“中國(guó)剩余定理”,若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=2(mod3).現(xiàn)將該問(wèn)題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的n等于(
A.21
B.22
C.23
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=an+2,數(shù)列{bn}的前n項(xiàng)和為Sn , 且Sn=2﹣bn
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為
(1)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(2)設(shè)P是曲線C上的任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案