【題目】已知數(shù)列{an}滿足a1=1,an+1=an+2,數(shù)列{bn}的前n項和為Sn , 且Sn=2﹣bn
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=anbn , 求數(shù)列{cn}的前n項和Tn

【答案】解:(Ⅰ)因為a1=1,an+1﹣an=2,

所以{an}為首項是1,公差為2的等差數(shù)列,

所以an=1+(n﹣1)×2=2n﹣1,

又當(dāng)n=1時,b1=S1=2﹣b1,所以b1=1,

當(dāng)n≥2時,Sn=2﹣bn①,Sn1=2﹣bn1

由①﹣②得bn=﹣bn+bn1,即 ,

所以{bn}是首項為1,公比為 的等比數(shù)列,

,n∈N*;

(Ⅱ)由(Ⅰ)知 ,

①,

= ②,

①﹣②得

= = =

所以


【解析】(Ⅰ)由等差數(shù)列的定義和通項公式可得an;運用數(shù)列的遞推式:當(dāng)n=1時,b1=S1,當(dāng)n≥2時,bn=Sn﹣Sn1,即可得到{bn}的通項公式;(Ⅱ)由(Ⅰ)知 ,運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,即可得到所求和.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前項和為Sn , 且 ,用[x]表示不超過x的最大整數(shù),如[﹣0.1]=﹣1,[1.6]=1,設(shè)bn=[an],則數(shù)列{bn}的前2n項和b1+b2+b3+b4++b2n1+b2n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出x的值是(
A.2016
B.1024
C.
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

工種類別

A

B

C

賠付頻率

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,3,則輸出v的值為(
A.16
B.18
C.48
D.143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2+ 的圖象經(jīng)過點(2,3),a為常數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用函數(shù)單調(diào)性定義證明f(x)在(a,+∞)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案