19.設(shè)x,y∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,y)$,$\overrightarrow c=(2,-4)$且$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b∥\overrightarrow c$,則x+y=0.

分析 利用向量共線定理、向量垂直與數(shù)量積的共線即可得出.

解答 解:∵$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b∥\overrightarrow c$,
∴$\overrightarrow{a}•\overrightarrow{c}$=2x-4=0,2y+4=0,
則x=2,y=-2.
∴x+y=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了向量共線定理、向量垂直與數(shù)量積的共線,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知A,B分別是函數(shù)f(x)=2sinωx(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則該函數(shù)的最小正周期是$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.由n(n≥2)個(gè)不同的數(shù)構(gòu)成的數(shù)列a1,a2,…an中,若1≤i<j≤n時(shí),aj<ai(即后面的項(xiàng)aj小于前面項(xiàng)ai),則稱ai與aj構(gòu)成一個(gè)逆序,一個(gè)有窮數(shù)列的全部逆序的總數(shù)稱為該數(shù)列的逆序數(shù).如對(duì)于數(shù)列3,2,1,由于在第一項(xiàng)3后面比3小的項(xiàng)有2個(gè),在第二項(xiàng)2后面比2小的項(xiàng)有1個(gè),在第三項(xiàng)1后面比1小的項(xiàng)沒(méi)有,因此,數(shù)列3,2,1的逆序數(shù)為2+1+0=3;同理,等比數(shù)列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}$的逆序數(shù)為4.
(1)計(jì)算數(shù)列${a_n}=-2n+19(1≤n≤100,n∈{N^*})$的逆序數(shù);
(2)計(jì)算數(shù)列${a_n}=\left\{\begin{array}{l}{({\frac{1}{3}})^n},n為奇數(shù)\\-\frac{n}{n+1},n為偶數(shù)\end{array}\right.$(1≤n≤k,n∈N*)的逆序數(shù);
(3)已知數(shù)列a1,a2,…an的逆序數(shù)為a,求an,an-1,…a1的逆序數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx,sinx),則函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在正四棱錐P-ABCD中,PA=AB=a,E是棱PC的中點(diǎn).
(1)求證:PC⊥BD;
(2)求直線BE與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在下列各區(qū)間中,存在著函數(shù)f(x)=x3+4x-3的零點(diǎn)的區(qū)間是( 。
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}+1,x<2}\\{{x^2}+px,x≥2}\end{array}}\right.$,若f(f(0))=5p,則p的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,${S_n}=\frac{4}{3}({a_n}-1)$,則數(shù)列$\{a_n^2\}$的前n項(xiàng)和Tn=$\frac{{1{6^{n+1}}-16}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)的距離為$\frac{17}{4}$.
(Ⅰ)求p和m的值;
(Ⅱ)設(shè)B(-1,1),過(guò)點(diǎn)B任作兩直線A1B1,A2B2,與拋物線C分別交于點(diǎn)A1,B1,A2,B2,過(guò)A1,B1的拋物線C的兩切線交于P,過(guò)A2,B2的拋物線C的兩切線交于Q,求PQ的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案