【題目】(Ⅰ)平面直角坐標系中,傾斜角為的直線過點,以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標方程;
(2)若直線與交于、兩點,且,求傾斜角的值.
(Ⅱ)已知函數(shù).
(1)若函數(shù)的最小值為5,求實數(shù)的值;
(2)求使得不等式成立的實數(shù)的取值范圍.
【答案】(Ⅰ)(1);(2) .(Ⅱ)(1) 或,(2).
【解析】【試題分析】(1)依據(jù)題設條件直接寫出直線的參數(shù)方程為 (為參數(shù)),后運用直角坐標與極坐標之間的關系將極坐標方程化為直角坐標方程;(2)依據(jù)題設條件把直線的參數(shù)方程代入,得,
, ,根據(jù)直線參數(shù)的幾何意義建立方程,求出得。
解:(Ⅰ)(1)直線的參數(shù)方程為 (為參數(shù)),
曲線的直角坐標方程: .
(2)把直線的參數(shù)方程代入,得,
, ,
根據(jù)直線參數(shù)的幾何意義, ,
得或.
又因為,
所以.
【試題分析】(1)依據(jù)題設條件借助絕對值三角不等式可得,后建立方程.求出或;(2)依據(jù)題設條件可得,然后分類求出其解集為。
解:(Ⅱ)(1)∵,
∴.
可得或.
(2)由題意可知,
當時, ,可得,
當時, ,可得.
綜上實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,并且內(nèi)切于定圓.
(1)求動圓圓心的軌跡方程;
(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線, 三點共線, ,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列幾種說法: ①若logablog3a=1,則b=3;
②若a+a﹣1=3,則a﹣a﹣1= ;
③f(x)=log(x+ 為奇函數(shù);
④f(x)= 為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log x,其中說法正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移 得到,則下列結論正確的是( )
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有﹪的把握認為“微信控”與“性別”有關?
(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中“微信控”的人數(shù)為,試求的分布列與數(shù)學期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為件時,銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關于當年產(chǎn)量的函數(shù)為,求;
(2)當該公司的年產(chǎn)量為多少件時,當年所獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實根,求f(x)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com