【題目】已知?jiǎng)又本與橢圓交于、兩個(gè)不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn).

1)證明均為定值;

2)設(shè)線段的中點(diǎn)為,求的最大值;

【答案】1)詳見解析;(2.

【解析】

1)對(duì)直線的斜率是否存在進(jìn)行分類討論,在直線的斜率不存在時(shí),可得出,根據(jù)的面積求得的值,可得出的值;在直線的斜率存在時(shí),設(shè)直線的方程為,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,利用三角形的面積公式可求得的值,進(jìn)而得出結(jié)論;

2)對(duì)直線的斜率是否存在進(jìn)行分類討論,在直線的斜率不存在時(shí),可直接求得的值;在直線的斜率存在時(shí),求得關(guān)于的表達(dá)式,利用基本不等式可求得的最大值,進(jìn)而可得出結(jié)論.

(1)當(dāng)直線的斜率不存在時(shí),、兩點(diǎn)關(guān)于軸對(duì)稱,所以,

在橢圓上,①,又,②

由①②得,.此時(shí);

當(dāng)直線的斜率存在時(shí),是直線的方程為,

將直線的方程代入,

,即,

由韋達(dá)定理得,

,

點(diǎn)O到直線的距離為,

,

,整理得,

此時(shí),

,

綜上所述,,結(jié)論成立;

2)當(dāng)直線的斜率不存在時(shí),由(1)知,,因此;

當(dāng)直線的斜率存在時(shí),由(1)知,

,

所以,

當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.

綜上所述,的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù).

1)當(dāng)時(shí),證明:;

2)若有兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,點(diǎn)E,F分別是棱C1D1B1C1的中點(diǎn),P是上底面A1B1C1D1內(nèi)一點(diǎn),若AP∥平面BDEF,則線段AP長(zhǎng)度的取值范圍是(

A.[]B.[,]C.[]D.[,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市積極貫徹落實(shí)國務(wù)院《十三五節(jié)能減排綜合工作方案》,空氣質(zhì)量明顯改善.該市生態(tài)環(huán)境局統(tǒng)計(jì)了某月(30天)空氣質(zhì)量指數(shù),繪制成如下頻率分布直方圖.已知空氣質(zhì)量等級(jí)與空氣質(zhì)量指數(shù)對(duì)照如下表:

空氣質(zhì)量指數(shù)

300以上

空氣質(zhì)量等級(jí)

一級(jí)

(優(yōu))

二級(jí)

(良)

三級(jí)

(輕度污染)

四級(jí)

(中度污染)

五級(jí)

(重度污染)

六級(jí)

(嚴(yán)重污染)

1)根據(jù)頻率分布直方圖估計(jì),在這30天中,空氣質(zhì)量等級(jí)為優(yōu)或良的天數(shù);

2)根據(jù)體質(zhì)檢查情況,醫(yī)生建議:當(dāng)空氣質(zhì)量指數(shù)高于90時(shí),市民甲不宜進(jìn)行戶外體育運(yùn)動(dòng);當(dāng)空氣質(zhì)量指數(shù)高于70時(shí),市民乙不宜進(jìn)行戶外體育運(yùn)動(dòng)(兩人是否進(jìn)行戶外體育運(yùn)動(dòng)互不影響).

①從這30天中隨機(jī)選取2天,記乙不宜進(jìn)行戶外體育運(yùn)動(dòng),且甲適宜進(jìn)行戶外體育運(yùn)動(dòng)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望;

②以該月空氣質(zhì)量指數(shù)分布的頻率作為以后每天空氣質(zhì)量指數(shù)分布的概率(假定每天空氣質(zhì)量指數(shù)互不影響),甲、乙兩人后面分別隨機(jī)選擇3天和2天進(jìn)行戶外體育運(yùn)動(dòng),求甲恰有2天,且乙恰有1天不宜進(jìn)行戶外體育運(yùn)動(dòng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足下列兩個(gè)條件:①對(duì)任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ2

1M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;

2)曲線C2上兩點(diǎn)與點(diǎn)Bρ2α),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,當(dāng)x[0,1]時(shí),fx)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系,過點(diǎn)作傾斜角為)的直線交曲線、兩點(diǎn).

1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;

2)過點(diǎn)的另一條直線垂直,且與曲線交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】輥?zhàn)邮强图覀鹘y(tǒng)農(nóng)具,南方農(nóng)民犁開田地后,仍有大的土塊.農(nóng)人便用六片葉齒組成輥軸,兩側(cè)裝上木板,人跨開兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動(dòng)輥軸前進(jìn),壓碎土塊,以利于耕種.這六片葉齒又對(duì)應(yīng)著菩薩六度,即布施持戒忍辱精進(jìn)禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機(jī)取一片,則這兩人選的葉齒對(duì)應(yīng)的“度”相同的概率為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案