15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-12x,x>t}\\{(a-1)x+2,x≤t}\end{array}\right.$,如果對一切實數(shù)t,函數(shù)f(x)在R上不單調(diào),則實數(shù)a的取值范圍是a≤1.

分析 通過討論t的范圍,確定函數(shù)在區(qū)間上的單調(diào)性,從而求出a的范圍即可.

解答 解:x>t時:f(x)=x3-12x,f′(x)=3x2-12=3(x+2)(x-2),
t<-2時,f(x)在(t,-2)遞增,在(-2,2)遞減,在(2,+∞)遞增,f(x)不單調(diào),
-2≤t≤2時,f(x)在(t,2)遞減,在(2,+∞)遞增,f(x)不單調(diào),
t>2時,f(x)在(t,+∞)單調(diào)遞增,
如果對一切實數(shù)t,函數(shù)f(x)在R上不單調(diào),
只需f(x)=(a-1)x+2在(-∞,t]遞減,
即a-1<0,解得:a<1,顯然a=1時,符合題意,
故答案為:a≤1.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.某校高一某班的一次數(shù)學測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題;
(1)求分數(shù)在[50,60)的頻率及全班的人數(shù);
(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計該班數(shù)學成績的平均數(shù)與中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在數(shù)列{an}中,a1=1,an•an+1=$\frac{n+2}{n}$cos(n+1)π,設(shè)Tn為數(shù)列{an}的前n項的積,則T99=-50.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在等差數(shù)列{an}中,a1=23,d=-2,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知袋中裝有大小相同的8個小球,其中5個紅球的編號為1,2,3,4,5,3個藍球的編號為1,2,3,現(xiàn)從袋中任意取出3個小球.
(1)求取出的3個小球中,有小球編號為3的概率;
(2)記X為取出的3個小球中編號的最大值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,△BCD與△MCD都是正三角形,平面MCD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥平面ABM;
(Ⅱ)若∠ACB=60°,求三棱錐A-BCD與三棱錐M-ACD的體積比;
(Ⅲ)若AB=2$\sqrt{3}$,CD=2,求直線DM與平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給出下列四個命題:
①冪函數(shù)一定是奇函數(shù)或偶函數(shù);
②任意兩個冪函數(shù)圖象都有兩個以上交點;
③如果兩個冪函數(shù)的圖象有三個公共點,那么這兩個冪函數(shù)相同;
④圖象不經(jīng)過點(-1,1)的冪函數(shù)一定不是偶函數(shù)
其中為真命題的是④(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在(x2+$\frac{1}{\sqrt{x}}$)5展開式中,常數(shù)項為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a>0,b>0,且log4a=log6b=log9(5a+2b),求$\frac{a}$的值.

查看答案和解析>>

同步練習冊答案