11.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC的中點,它的正(主)視圖和側(左)視圖如圖所示.

(Ⅰ)求三棱錐P-ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.

分析 (Ⅰ)由已知中的三視圖,得到棱錐的底面邊長和高,代入棱錐體積公式,可得答案;
(Ⅱ)取AB的中點O,連接CO并延長至Q,使得CQ=2CO,利用線面平行的判定可知點Q即為所求,證明ACBQ為平行四邊形,即可求出PQ的長

解答 解:(Ⅰ)由已知可得:
三棱錐P-ABD的底面ABC中,AC=BC=4,AC⊥BC,
高PA=4,
故三棱錐P-ABD體積V=$\frac{1}{3}$×$\frac{1}{2}$×4×4×4=$\frac{32}{3}$;…(6分)
(Ⅱ)解:如圖取AB的中點O,連接CO并延長至Q,使得CQ=2CO,點Q即為所求.   …(7分)

因為O為CQ中點,所以PQ∥OD,…(8分)
因為PQ?平面ABD,OD?平面ABD,所以PQ∥平面ABD…(10分)
連接AQ,BQ,四邊形ACBQ的對角線互相平分,
所以ACBQ為平行四邊形,所以AQ=4,…(11分)
又PA⊥平面ABC,
所以在直角△PAQ中,PQ=$\sqrt{{AP}^{2}+{AQ}^{2}}$=4$\sqrt{2}$.   …13 分

點評 本題考查的知識點是棱錐的體積,空間直線與平面的位置關系,棱錐的幾何特征,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=\sqrt{2}{sin^2}x-\sqrt{2}sinx•cosx-\frac{{\sqrt{2}}}{2}$.
(1)求函數(shù)y=f(x)的解析式,并用“五點法作圖”在給出的直角坐標系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)設α∈(0,π),f($\frac{α}{2}$)=$-\frac{1}{2}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知$cos({\frac{π}{6}-θ})=\frac{{2\sqrt{2}}}{3}$,則$cos({\frac{π}{3}+θ})$=$±\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設ω>0,函數(shù)y=sin(ωx+$\frac{π}{3}$)的圖象向右平移$\frac{4π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,則下列命題中正確的是( 。
A.若m、n都平行于平面α,則m、n一定不是相交直線
B.若m、n都垂直于平面α,則m、n一定是平行直線
C.已知α、β互相平行,m、n互相平行,若m∥α,則n∥β
D.若m、n在平面α內的射影互相平行,則m、n互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.陳老師常說“不學習就沒有出息”,這句話的意思是:“學習”是“有出息”的(  )
A.必要條件B.充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個零點,則所有零點之和為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知命題p:函數(shù)y=${log_{\frac{1}{2}}}({{x^2}+2x+a})$的值域R,命題q:函數(shù)y=x2a-5在(0,+∞)上是減函數(shù).若p∧?q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.給出下列命題:
①函數(shù)f(x)=loga(2x-1)-1的圖象過定點(1,0);
②已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≤0時,f(x)=x(x+1),則f(x)的解析式為f(x)=x2-|x|;
③若${log_a}\frac{1}{2}<1$,則a的取值范圍是$(0,\frac{1}{2})∪(2,+∞)$;
其中所有正確命題的序號是②.

查看答案和解析>>

同步練習冊答案