【題目】如圖,三棱柱中,,,,且平面⊥平面.
(1)求三棱柱的體積.
(2)點(diǎn)在棱上,且與平面所成角的余弦值為(),求的長(zhǎng).
【答案】(1)1;(2)
【解析】
(1)在平面內(nèi)過作與交于點(diǎn),推導(dǎo)出平面,利用,解得,由此能求出三棱柱的高,從而可得結(jié)果;(2)先利用余弦定理與等腰三角形的性質(zhì)證明,以為坐標(biāo)原點(diǎn),以分別為軸, 軸, 軸,建立空間直角坐標(biāo)系, ,利用向量垂直數(shù)量積為零,求得平面的法向量,利用空間向量夾角余弦公式可得結(jié)果.
(1)如圖,在平面內(nèi)過作與交于點(diǎn),
因?yàn)槠矫?/span>平面,且平面平面,平面,
所以平面,所以為與平面所成角,
由公式,解得,
所以,,
又的面積為,所以三棱柱的體積為.
(2)由(1)得在中,為中點(diǎn),連接,
由余弦定理得,解得,
所以,(或者利用余弦定理求)
以為坐標(biāo)原點(diǎn),以分別為軸, 軸, 軸,建立空間直角坐標(biāo)系,
則,
所以
設(shè) ,設(shè)平面的法向量為,
則,即,不妨令,則,即.
,
又因?yàn)?/span>與平面所成角的余弦值為,
所以 ,
解得或,
又因?yàn)?/span>,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,為其右焦點(diǎn),若,設(shè),且,則該橢圓的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,左焦點(diǎn)為,右頂點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),若直線垂直于軸時(shí),有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓:的中心為圓心,為半徑的圓稱為該橢圓的“準(zhǔn)圓”,設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿足,.
(1)求橢圓及其“準(zhǔn)圓"的方程;
(2)若過點(diǎn)的直線與橢圓交于、兩點(diǎn),當(dāng)時(shí),試求直線交“準(zhǔn)圓”所得的弦長(zhǎng);
(3)射線與橢圓的“準(zhǔn)圓”交于點(diǎn),若過點(diǎn)的直線,與橢圓都只有一個(gè)公共點(diǎn),且與橢圓的“準(zhǔn)圓”分別交于,兩點(diǎn),試問弦是否為”準(zhǔn)圓”的直徑?若是,請(qǐng)給出證明:若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示將同心圓環(huán)均勻分成n()格.在內(nèi)環(huán)中固定數(shù)字1~n.問能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉(zhuǎn)任意格后有且僅有一個(gè)格中內(nèi)外環(huán)的數(shù)字相同?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)解關(guān)于x的不等式f(x)<a-2(a∈R).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于.
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)作直線交橢圓于、兩點(diǎn),交軸于點(diǎn),若,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的是__________(填序號(hào))
①命題“,有”的否定是“”,有”;
②已知, , ,則的最小值為;
③設(shè),命題“若,則”的否命題是真命題;
④已知, ,若命題為真命題,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以橢圓C:(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形為等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2上,A、B在橢圓C上,若矩形ABCD的周長(zhǎng)為,求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com