【題目】已知橢圓上一點關(guān)于原點的對稱點為為其右焦點,若,設(shè),且,則該橢圓的離心率的取值范圍是( )

A. B.

C. D.

【答案】B

【解析】

橢圓=1(ab0)焦點在x軸上,四邊形AFF1B為長方形.根據(jù)橢圓的定義:

|AF|+|AF1|=2a,ABF=α,則∠AF1F=α.橢圓的離心率e===,α[,

],sin(α+1,﹣1,即可求得橢圓離心率e的取值范圍.

橢圓=1(ab0)焦點在x軸上,

橢圓上點A關(guān)于原點的對稱點為點B,F(xiàn)為其右焦點,設(shè)左焦點為F1,連接AF,AF1,BF,

BF1,

∴四邊形AFF1B為長方形.

根據(jù)橢圓的定義:|AF|+|AF1|=2a,

ABF=α,則:∠AF1F=α.

2a=2ccosα+2csinα

橢圓的離心率e===,α[,]

α+,

則:sin(α+1,

﹣1,

∴橢圓離心率e的取值范圍:,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1+tan1°)(1+tan2°1+tan43°)(1+tan44°=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)已知點,直線與曲線交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為O為坐標(biāo)原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于P,Q兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,順次連接橢圓的四個頂點得到的四邊形的面積為,點.

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點,是橢圓上的兩點.

(ⅰ)若,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰(zhàn)勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關(guān)的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關(guān)知識了解全面,“中老年人”中對防控的相關(guān)知識了解全面和不夠全面的人數(shù)之比是2:1.

1)求圖中的值;

2)現(xiàn)采取分層抽樣在中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計結(jié)果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關(guān)知識?

了解全面

了解不全面

合計

青少年人

中老年人

合計

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)若對于任意的,都有成立,求的取值范圍;

(2)在(1)的條件下,若方程上有且只有一個實根,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案