1.已知x0是函數(shù)$f(x)={(\frac{1}{2})^x}+\frac{1}{x}$的一個零點(diǎn),且x1∈(-∞,x0),x2∈(x0,0),則(  )
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)<0,f(x2)>0D.f(x1)>0,f(x2)<0

分析 判斷f(x)在(-∞,0)上的單調(diào)性,從而得出答案.

解答 解:∵y=($\frac{1}{2}$)x在(-∞,0)上單調(diào)遞減,
y=$\frac{1}{x}$在(-∞,0)上單調(diào)遞減,
∴f(x)=($\frac{1}{2}$)x+$\frac{1}{x}$在(-∞,0)上單調(diào)遞減,
∵f(x0)=0,x1<x0,x0<x2<0,
∴f(x1)>0,f(x2)<0.
故選D.

點(diǎn)評 本題考查了函數(shù)零點(diǎn),函數(shù)單調(diào)性的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解下列不等式.
(1)-4x2+12x-9<0;
(2)$\frac{x+1}{2x+1}$≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩曲線f(x)=cosx與g(x)=$\sqrt{3}$sinx的一個交點(diǎn)為P,則點(diǎn)P到x軸的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是(  )
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標(biāo)準(zhǔn)差是3.3
C.K2是用來判斷兩個分類變量是否相關(guān)的隨機(jī)變量,當(dāng)K2的值很小時可以推定兩類變量不相關(guān)
D.設(shè)有一個回歸直線方程為$\widehat{y}$=2-1.5x,則變量x每增加一個單位,$\widehat{y}$平均減少1.5個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,${a_{n+1}}=\frac{n+2}{n}{a_n}+1$,其中n=1,2,3,….
(Ⅰ) 計(jì)算a2,a3,a4,a5的值;
(Ⅱ) 根據(jù)計(jì)算結(jié)果,猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線系方程為xcosφ+ysinφ=2,圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,(φ為參數(shù)),則直線與圓的位置關(guān)系為( 。
A.相交不過圓心B.相交且經(jīng)過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.離心率為$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)(2,0)的橢圓的標(biāo)準(zhǔn)方程是( 。
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$
C.x2+4y2=1D.$\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式(2x+1)(x-1)≤0的解集為( 。
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

同步練習(xí)冊答案