已知函數(shù).
(1)若曲線處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

(1). (2) ①當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是. ②當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是. (3).

解析試題分析:.                   
(1),解得.                          
(2).                    
①當(dāng)時(shí),,
在區(qū)間上,;在區(qū)間
的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.     
②當(dāng)時(shí),,
在區(qū)間上,;在區(qū)間,
的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
③當(dāng)時(shí),, 故的單調(diào)遞增區(qū)間是.  
④當(dāng)時(shí),,
在區(qū)間上,;在區(qū)間,
的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.   
(3)由已知,在上有.             
由已知,,由(2)可知,
①當(dāng)時(shí),上單調(diào)遞增,

所以,,解得,故
②當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,
.
可知,,
所以,,,                       
綜上所述,.  
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):對(duì)于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),過曲線上的點(diǎn)P的切線方程為
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對(duì)任意,都有;
(3)若,對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對(duì)任意,都有
(3)若,對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的圖像在處的切線方程;
(Ⅱ)設(shè)實(shí)數(shù),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值
(1)求
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案