分析 (Ⅰ)利用三種方程的轉(zhuǎn)化方法,求曲線C與直線l的普通方程;
(Ⅱ)求出|AB|,O到直線l的距離,即可求△AOB的面積.
解答 解:(Ⅰ)已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)),消去參數(shù)得y2=4x,
直線l的極坐標(biāo)方程為ρ(cosθ-sinθ)=4,由x=ρcosθ,y=ρsinθ得普通方程為x-y-4=0;
(Ⅱ)已知拋物線y2=4x與直線x-y-4=0相交于A,B兩點(diǎn),
由$\left\{\begin{array}{l}{y^2}=4x\\ x-y-4=0\end{array}\right.$,得$|AB|=4\sqrt{10}$,O到直線l的距離$d=\frac{|0-0-4|}{{\sqrt{2}}}=2\sqrt{2}$,
所以△AOB的面積為$S=\frac{1}{2}×2\sqrt{2}×4\sqrt{10}=8\sqrt{5}$.
點(diǎn)評 本題考查三種方程的轉(zhuǎn)化,考查三角形面積的計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (¬p)∨(¬q)為真命題 | B. | p∨(¬q)為真命題 | C. | (¬p)∧(¬q)為真命題 | D. | p∨q為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48 | B. | 36 | C. | 30 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com